pca基础知识不了解的可以先看下一这篇博客:https://www.cnblogs.com/lliuye/p/9156763.html

具体算法实现如下:

 import numpy as np
import matplotlib.pyplot as plt
# 载入数据
data = np.genfromtxt("data.csv", delimiter=",")
x_data = data[:,]
y_data = data[:,]
plt.scatter(x_data,y_data)
plt.show()
print(x_data.shape)
# 数据中心化
def zeroMean(dataMat):
# 按列求平均,即各个特征的平均
meanVal = np.mean(dataMat, axis=)
newData = dataMat - meanVal
return newData, meanVal
newData,meanVal=zeroMean(data)
print(newData.shape)
# np.cov用于求协方差矩阵,参数rowvar=0说明数据一行代表一个样本,若非0,说明传入的数据一列代表一个样本。
covMat = np.cov(newData, rowvar=)#因为是行作为样本,所以列作为特征,得到的协方差是2*
# 协方差矩阵
print(covMat)
# np.linalg.eig求矩阵的特征值和特征向量
eigVals, eigVects = np.linalg.eig(np.mat(covMat))
# 特征值
print(eigVals)
# 特征向量
print(eigVects.shape)
# 对特征值从小到大排序
eigValIndice = np.argsort(eigVals)
eigValIndice
top =
# 最大的n个特征值的下标
n_eigValIndice = eigValIndice[-:-(top+):-]
print(n_eigValIndice)
# 最大的n个特征值对应的特征向量
n_eigVect = eigVects[:,n_eigValIndice]
print(n_eigVect.shape)
# 低维特征空间的数据
lowDDataMat = newData*n_eigVect#原始数据投射到选取的特征向量上
print(lowDDataMat.shape)#低纬数据
# 利用低纬度数据来重构数据
reconMat = (lowDDataMat*n_eigVect.T) + meanVal#降维的逆操作
reconMat
# 载入数据
data = np.genfromtxt("data.csv", delimiter=",")
x_data = data[:,]
y_data = data[:,]
plt.scatter(x_data,y_data) # 重构的数据
x_data = np.array(reconMat)[:,]
y_data = np.array(reconMat)[:,]
plt.scatter(x_data,y_data,c='r')
plt.show() plt.show()

关于np.cov的用法详细如下:

1. np.cov(x)
 
x=[1,2,3,4]
np.cov(x)12
输出为 array(1.6666666666666665),一开始我以为当x为一个行向量时,cov(x)计算的就是x的方差。但是通过观察发现
 
np.var(x)*4     #output:5
np.cov(x)*3     #output:512
np.cov(x)这种情况计算的是x方差的无偏估计,即s2=∑ni=1(x−x^)n−1s2=∑i=1n(x−x^)n−1,而np.var(x)计算的则是s2=∑ni=1(x−x^)ns2=∑i=1n(x−x^)n
接着我们再假设x为一个4*3的矩阵
 
X=np.array([[1 ,5 ,6] ,[4 ,3 ,9 ],[ 4 ,2 ,9],[ 4 ,7 ,2]])
np.cov(x)12
首先不同于matlab。在numpy中,将x的每一列视作一个独立的变量,因此这里一共有4个3维的变量,因此将会输出一个4*4的协方差矩阵
 
其中对角线元素是每个维度的方差,非对角线上的元素则是不同维度间的协方差。
2. np.cov(x,y)
在学习的过程中还有一点比较困惑的是np.cov(x)和np.cov(x,y)的区别,以下用代码来进行说明:
 
X=np.array([[1 ,5 ,6] ,[4 ,3 ,9 ],[ 4 ,2 ,9],[ 4 ,7 ,2]])
x=X[0:2]
y=X[2:4]
print(np.cov(X))
print(np.cov(x,y))12345
输出为
 
可以看出两者的输出是相同的。因此所谓的np.cov(X)其实就是把np.cov(x,y)中两个变量所有的维度纵向拼接在一起作为X参与运算。

pca算法实现的更多相关文章

  1. PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?

    PCA, Principle Component Analysis, 主成份分析, 是使用最广泛的降维算法. ...... (关于PCA的算法步骤和应用场景随便一搜就能找到了, 所以这里就不说了. ) ...

  2. 模式识别(1)——PCA算法

    作者:桂. 时间:2017-02-26  19:54:26 链接:http://www.cnblogs.com/xingshansi/articles/6445625.html 声明:转载请注明出处, ...

  3. 三种方法实现PCA算法(Python)

    主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目 ...

  4. 降维之pca算法

    pca算法: 算法原理: pca利用的两个维度之间的关系和协方差成正比,协方差为0时,表示这两个维度无关,如果协方差越大这表明两个维度之间相关性越大,因而降维的时候, 都是找协方差最大的. 将XX中的 ...

  5. PCA算法学习(Matlab实现)

    PCA(主成分分析)算法,主要用于数据降维,保留了数据集中对方差贡献最大的若干个特征来达到简化数据集的目的. 实现数据降维的步骤: 1.将原始数据中的每一个样本用向量表示,把所有样本组合起来构成一个矩 ...

  6. OpenCV学习(35) OpenCV中的PCA算法

    PCA算法的基本原理可以参考:http://www.cnblogs.com/mikewolf2002/p/3429711.html     对一副宽p.高q的二维灰度图,要完整表示该图像,需要m = ...

  7. 我所认识的PCA算法的princomp函数与经历 (基于matlab)

    我接触princomp函数,主要是因为实验室的项目需要,所以我一接触的时候就希望快点学会怎么用. 项目中需要利用PCA算法对大量数据进行降维. 简介:主成分分析 ( Principal Compone ...

  8. PCA算法的最小平方误差解释

    PCA算法另外一种理解角度是:最小化点到投影后点的距离平方和. 假设我们有m个样本点,且都位于n维空间 中,而我们要把原n维空间中的样本点投影到k维子空间W中去(k<n),并使得这m个点到投影点 ...

  9. PCA算法理解及代码实现

    github:PCA代码实现.PCA应用 本文算法均使用python3实现 1. 数据降维   在实际生产生活中,我们所获得的数据集在特征上往往具有很高的维度,对高维度的数据进行处理时消耗的时间很大, ...

  10. Python使用三种方法实现PCA算法[转]

    主成分分析(PCA) vs 多元判别式分析(MDA) PCA和MDA都是线性变换的方法,二者关系密切.在PCA中,我们寻找数据集中最大化方差的成分,在MDA中,我们对类间最大散布的方向更感兴趣. 一句 ...

随机推荐

  1. true - (成功的)什么都不做

    总览 (SYNOPSIS) true [忽略命令行参数] true OPTION 描述 (DESCRIPTION) 程序 结束 时, 产生 表示 成功 的 状态码. 下列的 选项 没有 简写 形式. ...

  2. 微信小程序改变全局变量

    假设A为登录页面并将登录获得的用户信息保存到app.js中的全局变量userInfo中,然后在B页面进行使用. app.js globalData:{    userInfo:null, } a.js ...

  3. Opencv 特征提取与检测-图像特征描述

    图像特征描述 什么是图像特征 可以表达图像中对象的主要信息.并且以此为依据可以从其它未知图像中检测出相似或者相同对象 常见的图像特征 常见的图像特征  边缘  角点  纹理 图像特征描述  描 ...

  4. ZMQ面面观

    ZMQ是什么? 这是个类似于Socket的一系列接口,他跟Socket的区别是:普通的socket是端到端的(1:1的关系),而ZMQ却是可以N:M 的关系,人们对BSD套接字的了解较多的是点对点的连 ...

  5. webpack初始化

    1. 安装node js 2. 安装npm 3. 在桌面新建一个文件夹 4.利用cmd 进入文件夹 5.在cmd中创建一个新文件夹并且进入 6.npm init -y  生成page.json 7. ...

  6. 14. static(静态) 关键字

    1.修饰成员变量 1)定义:数据需要被共享给所有对象使用使用static修饰(全局变量) 2)注意: 1.用static中创建的成员变量在内存中只有一份 2.千万不要为了方便访问数据而使用static ...

  7. cut sort uniq wc 一 文本处理工具

    cut cut是一个选取命令,就是将一段数据经过分析,取出我们想要的. 一般来说,选取信息通常是针对"行"来进行分析的,并不是整篇信息分析的. -c : 以字符为单位进行分割. c ...

  8. 解决php-fpm占用cpu memory过高,开启php-fpm request_slowlog_timeout

    项目刚从win下挪到linux下,发现cpu过高,内存也占用较多,以下是我解决问题的过程: 首先更改php-fpm配置 vim /usr/local/php/etc/php-fpm.conf 找到 r ...

  9. python爬虫教程之美丽汤(一)

    python 爬虫之美丽汤 BeautifulSoup 作者: jwang106 1. 使用requests获取网页的html源码 import requests from bs4 import Be ...

  10. Python中的startswith和endswith函数使用实例

    Python中的startswith和endswith函数使用实例 在Python中有两个函数分别是startswith()函数与endswith()函数,功能都十分相似,startswith()函数 ...