hdu3879 最大权闭合图
若a,b 2点能够相连,那么可以得到ci的价值,也就是说a,b是得到c的前提条件,对于每一个点,又有耗费。
对于本题,先求出最多能够得到的利益有多少,最小割=未被 选的用户的收益之和 + 被选择的站点的成本之和,要尽量的小。
#include<stdio.h>
#include<string.h>
#include<queue>
#define INF 99999999
using namespace std;
const int maxn = ;
struct node
{
int to;
int v;
int flag;
int next;
}edge[];
int pre[maxn],index,vis[maxn],S,T;
int min(int x,int y){return x<y?x:y;}
void add(int x,int y,int z)
{
edge[index].to=y;
edge[index].v=z;
edge[index].flag=index+;
edge[index].next=pre[x];
pre[x]=index++;
edge[index].to=x;
edge[index].v=;
edge[index].flag=index-;
edge[index].next=pre[y];
pre[y]=index++;
}
int dfs(int u,int low)
{
int i,used=;
if(u==T)
return low;
for(i=pre[u];i!=-&&used<low;i=edge[i].next)
{
if(vis[edge[i].to]==vis[u]+&&edge[i].v>)
{
int a=dfs(edge[i].to,min(edge[i].v,low-used));
if(!a)continue;
edge[i].v-=a;
edge[edge[i].flag].v+=a;
used+=a;
}
}
if(!used)
vis[u]=-;
return used;
}
bool BFS()
{
memset(vis,-,sizeof(vis));
queue<int>q;
int i;
vis[]=;
q.push();
while(!q.empty())
{
int t=q.front();
q.pop();
for(i=pre[t];i!=-;i=edge[i].next)
{
if(edge[i].v&&vis[edge[i].to]<)
{
vis[edge[i].to]=vis[t]+;
q.push(edge[i].to);
}
}
}
if(vis[T]>)
return true;
return false;
}
int main()
{
int n,m,s,t,i;
while(~scanf("%d%d",&n,&m))
{
index=;
memset(pre,-,sizeof(pre));
for(i=;i<=n;i++)
{
int x;
scanf("%d",&x);
add(,i,x);
}
int sum=;
for(i=;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,n+i,INF);
add(y,n+i,INF);
add(n+i,n+m+,z);
sum+=z;
}
int ans=;
S=,T=n+m+;
while(BFS())
{
int a=dfs(,INF);
if(!a)break;
ans+=a;
}
printf("%d\n",sum-ans);
}
}
把每个用户和每个站点都看成一个顶点。建立网络,从源点S向每个用户连接一条容量为收益的有向边,每个用户向相关的两个站点连接一条容量为无穷大的 有向边,每个站点向汇点T连接一条容量为成本的有向边。求出网络最小割集的容量就是Maxflow=(未被选的用户的收益之和 + 被选择的站点的成本之和)。设Total为所有用户的收益之和,我们要求的是(被选的用户的收益之和 – 被选择的站点的成本之和),恰好等于Total – Maxflow,就是最大收益。
为什么是这样的?因为任何一个可行割集对应了一个满足条件的方案,具体来说被选择的顶点就是S集合中的顶点,而割集对应了cut=(未被 选的用户的收益之和 + 被选择的站点的成本之和),我们为了要求的(被选的用户的收益之和 – 被选择的站点的成本之和)= Total – cut尽量大,Total一定,所以要让cut尽量小,直至最小割集。
hdu3879 最大权闭合图的更多相关文章
- 最大权闭合图最大获益(把边抽象为点)HDU3879
题意:给出一个无向图,每个点都有点权值代表花费,每条边都有利益值,代表形成这条边就可以获得e[i]的利益,问选择那些点可以获得最大利益是多少? 分析:把边抽象成点,s与该点建边,容量是利益值,每个点与 ...
- hdu 3879 hdu 3917 构造最大权闭合图 俩经典题
hdu3879 base station : 各一个无向图,点的权是负的,边的权是正的.自己建一个子图,使得获利最大. 一看,就感觉按最大密度子图的构想:选了边那么连接的俩端点必需选,于是就以边做点 ...
- poj 2987 最大权闭合图
Language: Default Firing Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 8744 Accept ...
- 【TYVJ】1338 QQ农场(最大流+最大权闭合图)
http://tyvj.cn/Problem_Show.aspx?id=1338 时间才排到rank7,还不快啊囧.isap我常数都写得那么小了... 最大权闭合图看我另一篇博文吧 此题很明显的模型. ...
- 最大权闭合图 && 【BZOJ】1497: [NOI2006]最大获利
http://www.lydsy.com/JudgeOnline/problem.php?id=1497 最大权闭合图详细请看胡伯涛论文<最小割模型在信息学竞赛中的应用>,我在这里截图它的 ...
- 最大权闭合图hdu3996
定义:最大权闭合图:是有向图的一个点集,且该点集的所有出边都指向该集合.即闭合图内任意点的集合也在改闭合图内,给每个点分配一个点权值Pu,最大权闭合图就是使闭合图的点权之和最大. 最小割建边方式:源点 ...
- BZOJ 1565 植物大战僵尸(最大权闭合图)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1565 题意:植物大战僵尸,一个n*m的格子,每 个格子里有一个植物,每个植物有两个属性: ...
- hdu 3061 Battle 最大权闭合图
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3061 由于小白同学近期习武十分刻苦,很快被晋升为天策军的统帅.而他上任的第一天,就面对了一场极其困难的 ...
- hdu 3879 Base Station 最大权闭合图
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3879 A famous mobile communication company is plannin ...
随机推荐
- ROS urdf和xacro文件详解
视觉标签:visual <visual> <origin xyz="0.0 0.0 0.0" /> <geometry> <box siz ...
- Django项目:CMDB(服务器硬件资产自动采集系统)--06--06CMDB测试Linux系统采集硬件数据的命令01
#base.py # ————————01CMDB获取服务器基本信息———————— from config import settings #配置文件 class BasePlugin(object ...
- MyBatis映射器(一)--多参数传递方式
在mybatis映射器的接口中,一般在查询时需要传递一些参数作为查询条件,有时候是一个,有时候是多个.当只有一个参数时,我们只要在sql中使用接口中的参数名称即可,但是如果是多个呢,就不能直接用参数名 ...
- 爬虫的终极形态:nightmare
爬虫的终极形态:nightmare nightmare 是一个基于 electron 的自动化库(意思是说它自带浏览器),用于实现爬虫或自动化测试.相较于传统的爬虫框架(scrapy/pyspider ...
- Leetcode173. Binary Search Tree Iterator二叉搜索树迭代器
实现一个二叉搜索树迭代器.你将使用二叉搜索树的根节点初始化迭代器. 调用 next() 将返回二叉搜索树中的下一个最小的数. 注意: next() 和hasNext() 操作的时间复杂度是O(1),并 ...
- 调用本地摄像头并通过canvas拍照
首先我们需要新建一个video标签,并且放到html里边 var video = document.createElement("video"); video.autoplay=& ...
- 做移动应用使用地图API时需要注意的问题
最近在做一个基于地点提醒的移动应用,当初考虑大家都心知肚明的原因,谨慎的选择了百度地图,现在想想其实完全没有必要,好的应用本来就不分国界的,最后可能还是得换回Google地图.毕竟Google地图在技 ...
- 微信小程序 原生框架 (分享方法封装)
封装的分享方法 function share(o,isDebug = false ) { //路径 let url = o.url || getCurrentPages()[getCurrentPag ...
- SpringBoot+Shiro+mybatis整合实战
SpringBoot+Shiro+mybatis整合 1. 使用Springboot版本2.0.4 与shiro的版本 引入springboot和shiro依赖 <?xml version=&q ...
- WPF:数据绑定--PropertyChangeNotification属性更改通知
PropertyChangeNotification属性更改通知 实现效果:1.拍卖金额自动随属性值变化而通知界面绑定的值变化. 关键词 : INotifyPropertyChanged Obse ...