若a,b 2点能够相连,那么可以得到ci的价值,也就是说a,b是得到c的前提条件,对于每一个点,又有耗费。

对于本题,先求出最多能够得到的利益有多少,最小割=未被 选的用户的收益之和 + 被选择的站点的成本之和,要尽量的小。

#include<stdio.h>
#include<string.h>
#include<queue>
#define INF 99999999
using namespace std;
const int maxn = ;
struct node
{
int to;
int v;
int flag;
int next;
}edge[];
int pre[maxn],index,vis[maxn],S,T;
int min(int x,int y){return x<y?x:y;}
void add(int x,int y,int z)
{
edge[index].to=y;
edge[index].v=z;
edge[index].flag=index+;
edge[index].next=pre[x];
pre[x]=index++;
edge[index].to=x;
edge[index].v=;
edge[index].flag=index-;
edge[index].next=pre[y];
pre[y]=index++;
}
int dfs(int u,int low)
{
int i,used=;
if(u==T)
return low;
for(i=pre[u];i!=-&&used<low;i=edge[i].next)
{
if(vis[edge[i].to]==vis[u]+&&edge[i].v>)
{
int a=dfs(edge[i].to,min(edge[i].v,low-used));
if(!a)continue;
edge[i].v-=a;
edge[edge[i].flag].v+=a;
used+=a;
}
}
if(!used)
vis[u]=-;
return used;
}
bool BFS()
{
memset(vis,-,sizeof(vis));
queue<int>q;
int i;
vis[]=;
q.push();
while(!q.empty())
{
int t=q.front();
q.pop();
for(i=pre[t];i!=-;i=edge[i].next)
{
if(edge[i].v&&vis[edge[i].to]<)
{
vis[edge[i].to]=vis[t]+;
q.push(edge[i].to);
}
}
}
if(vis[T]>)
return true;
return false;
}
int main()
{
int n,m,s,t,i;
while(~scanf("%d%d",&n,&m))
{
index=;
memset(pre,-,sizeof(pre));
for(i=;i<=n;i++)
{
int x;
scanf("%d",&x);
add(,i,x);
}
int sum=;
for(i=;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,n+i,INF);
add(y,n+i,INF);
add(n+i,n+m+,z);
sum+=z;
}
int ans=;
S=,T=n+m+;
while(BFS())
{
int a=dfs(,INF);
if(!a)break;
ans+=a;
}
printf("%d\n",sum-ans);
}
}
分析:

把每个用户和每个站点都看成一个顶点。建立网络,从源点S向每个用户连接一条容量为收益的有向边,每个用户向相关的两个站点连接一条容量为无穷大的 有向边,每个站点向汇点T连接一条容量为成本的有向边。求出网络最小割集的容量就是Maxflow=(未被选的用户的收益之和 + 被选择的站点的成本之和)。设Total为所有用户的收益之和,我们要求的是(被选的用户的收益之和 – 被选择的站点的成本之和),恰好等于Total – Maxflow,就是最大收益。

为什么是这样的?因为任何一个可行割集对应了一个满足条件的方案,具体来说被选择的顶点就是S集合中的顶点,而割集对应了cut=(未被 选的用户的收益之和 + 被选择的站点的成本之和),我们为了要求的(被选的用户的收益之和 – 被选择的站点的成本之和)= Total – cut尽量大,Total一定,所以要让cut尽量小,直至最小割集。

hdu3879 最大权闭合图的更多相关文章

  1. 最大权闭合图最大获益(把边抽象为点)HDU3879

    题意:给出一个无向图,每个点都有点权值代表花费,每条边都有利益值,代表形成这条边就可以获得e[i]的利益,问选择那些点可以获得最大利益是多少? 分析:把边抽象成点,s与该点建边,容量是利益值,每个点与 ...

  2. hdu 3879 hdu 3917 构造最大权闭合图 俩经典题

    hdu3879  base station : 各一个无向图,点的权是负的,边的权是正的.自己建一个子图,使得获利最大. 一看,就感觉按最大密度子图的构想:选了边那么连接的俩端点必需选,于是就以边做点 ...

  3. poj 2987 最大权闭合图

    Language: Default Firing Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 8744   Accept ...

  4. 【TYVJ】1338 QQ农场(最大流+最大权闭合图)

    http://tyvj.cn/Problem_Show.aspx?id=1338 时间才排到rank7,还不快啊囧.isap我常数都写得那么小了... 最大权闭合图看我另一篇博文吧 此题很明显的模型. ...

  5. 最大权闭合图 && 【BZOJ】1497: [NOI2006]最大获利

    http://www.lydsy.com/JudgeOnline/problem.php?id=1497 最大权闭合图详细请看胡伯涛论文<最小割模型在信息学竞赛中的应用>,我在这里截图它的 ...

  6. 最大权闭合图hdu3996

    定义:最大权闭合图:是有向图的一个点集,且该点集的所有出边都指向该集合.即闭合图内任意点的集合也在改闭合图内,给每个点分配一个点权值Pu,最大权闭合图就是使闭合图的点权之和最大. 最小割建边方式:源点 ...

  7. BZOJ 1565 植物大战僵尸(最大权闭合图)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1565 题意:植物大战僵尸,一个n*m的格子,每 个格子里有一个植物,每个植物有两个属性: ...

  8. hdu 3061 Battle 最大权闭合图

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3061 由于小白同学近期习武十分刻苦,很快被晋升为天策军的统帅.而他上任的第一天,就面对了一场极其困难的 ...

  9. hdu 3879 Base Station 最大权闭合图

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3879 A famous mobile communication company is plannin ...

随机推荐

  1. 什么情况下要加上【javascript:】

    你知道http:// https:// mailto: tencent://这种东西么?这叫url schema,通常是在a的href里的.但a的href里面是不能加脚本的,所以浏览器就创造了一个叫j ...

  2. 作业test

    views Car <template> <div class="car"> <Nav/> <div class="wrap&q ...

  3. leetcode 843. Guess the Word

    我做过的第一个 interactive problem 给一个候选词列表,每次猜测可以猜里面的词,会返回猜中匹配的个数, 可以猜10次, 加上随机化策略之后几乎可以一定通过测试(尽管不是100%) c ...

  4. openCV图像合成

    #include <iostream> #include <opencv2/opencv.hpp> #include <opencv2/highgui/highgui.h ...

  5. SPOJ 2916 GSS5 - Can you answer these queries V

    传送门 解题思路 和GSS1相似,但需要巨恶心的分类讨论,对于x1<=y1< x2< =y2 这种情况 , 最大值应该取[x1,y1]的右端最大+[y1+1,x2-1]的和+[x2, ...

  6. vue打包之部署在非根路径下的三两事

    首先,感叹一下,2019年已经过去一半,想想自己做了些什么,好像也没做什么. 今天试着配一个nginx,以前的nginx都是指向的/根路径,今天的nginx指向的非/根路径,遇到许多问题的,总结总结. ...

  7. myeclipse10.7的破解 不需要去CSDN付费下载-免csdn费下载

    吐槽一下,大票CSDN博主,在博文里基本不放干货,都弄成附件,放在csdn付费下载,一个破解办法,竟然50元,好在我是vip用户,不在乎价格,特此 这篇文章搬运一下资源给大家免费下载 顺便纠正一下其文 ...

  8. 避免SQL注入三慷慨法

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/wangyy130/article/details/26154837       要说SQL注入还要从 ...

  9. 备忘录模式(Memento、Originator、Caretaker)(状态保存,备份恢复)

    定义:在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态.这样就可以将该对象恢复到原先保存的状态 类型:行为类 类图: 我们在编程的时候,经常需要保存对象的中间状态,当需要的时 ...

  10. 3_58 csapp 第三版的答案

    参考代码了http://blog.csdn.net/scf0920/article/details/77543294 3.58 看汇编写c代码 long decode(long x, long y,l ...