import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点
OUTPUT_NODE = 10 # 输出节点
LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 5000
MOVING_AVERAGE_DECAY = 0.99 def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
# 不使用滑动平均类
if avg_class == None:
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2 else:
# 使用滑动平均类
layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2) def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
# 生成隐藏层的参数。
weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
# 生成输出层的参数。
weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) # 计算不含滑动平均类的前向传播结果
y = inference(x, None, weights1, biases1, weights2, biases2) # 定义训练轮数及相关的滑动平均类
global_step = tf.Variable(0, trainable=False)
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
average_y = inference(x, variable_averages, weights1, biases1, weights2, biases2) # 计算交叉熵及其平均值
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy) # 损失函数的计算
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
regularaztion = regularizer(weights1) + regularizer(weights2)
loss = cross_entropy_mean + regularaztion # 设置指数衰减的学习率。
learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE,LEARNING_RATE_DECAY,staircase=True) # 优化损失函数
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) # 反向传播更新参数和更新每一个参数的滑动平均值
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 计算正确率
correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 初始化会话,并开始训练过程。
with tf.Session() as sess:
tf.global_variables_initializer().run()
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
test_feed = {x: mnist.test.images, y_: mnist.test.labels} # 循环的训练神经网络。
for i in range(TRAINING_STEPS):
if i % 1000 == 0:
validate_acc = sess.run(accuracy, feed_dict=validate_feed)
print("After %d training step(s), validation accuracy using average model is %g " % (i, validate_acc))
xs,ys=mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op,feed_dict={x:xs,y_:ys})
test_acc=sess.run(accuracy,feed_dict=test_feed)
print(("After %d training step(s), test accuracy using average model is %g" %(TRAINING_STEPS, test_acc))) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
train(mnist) if __name__=='__main__':
main()

吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  2. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  3. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  4. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用指数衰减的学习率

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  5. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  6. 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别

    import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...

  7. 吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...

  8. 吴裕雄 python 神经网络——TensorFlow训练神经网络:卷积层、池化层样例

    import numpy as np import tensorflow as tf M = np.array([ [[1],[-1],[0]], [[-1],[2],[1]], [[0],[2],[ ...

  9. 吴裕雄--天生自然 Tensorflow卷积神经网络:花朵图片识别

    import os import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageChops from ...

随机推荐

  1. 深浅拷贝_python

    一.浅拷贝 拷贝第一层的东西,如其他列表修改他们共同的第二层(或更深),他管不了,只能跟着变. 用处:很少用,用不同账号关联共享: import copyhusband= ['chen','123', ...

  2. 题解【洛谷P2513/CJOJ1345】[HAOI2009]逆序对数列

    P1345 - [HAOI2009]逆序对数列 Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成 ...

  3. pudn免费下载账号 codeforge积分账号 pudn共享账号 codeforge下载账号

    www.pudn.com和www.codeforge.cn网站下载代码很好,没有积分怎么办?那么多好的matlab代码,matlab程序,C,JAVA等等,都要充值啊!!! 下面的账号积分都用完了,大 ...

  4. arcgis中的load data加载数据

    该工具通过设定字段的对应关系将一个要素类(feature class)的数据加载到另一个要素类里面.通过选择应加载到每个目标字段中的源字段,将匹配源字段中的数据加载到目标数据中. 还可以设置查询,仅加 ...

  5. date命令的帮助信息,使用date命令输出数字做为命名标题则不会有重复标题

    date命令的帮助信息,如下图 原文来自 https://blog.csdn.net/yz18931904/article/details/80985345 [root@localhost sourc ...

  6. rancher 方式创建nfs-client 存储类流程

    rancher 方式创建nfs-client 存储类流程 待办 https://www.iamle.com/archives/2514.html

  7. Logarithmic-Trigonometric积分系列(一)

    \[\Large\displaystyle \int_{0}^{\frac{\pi }{2}}x^{2}\ln\left ( \sin x \right )\ln\left ( \cos x \rig ...

  8. 移动APP漏洞自动化检测平台建设

    移动APP漏洞自动化检测平台建设   前言:本文是<移动APP客户端安全笔记>系列原创文章中的第一篇,主要讲的是企业移动APP自动化漏洞检测平台建设,移动APP漏洞检测发展史与前沿技术,A ...

  9. iframe内外的操作

    因为iframe涉及到跨域问题,有时候有的比较多,这不今天遇到了一个问题,处在iframe里头的js要操作iframe元素,查找百度,是可以实现的: 用jQuery在IFRAME里取得父窗口的某个元素 ...

  10. pipreqs (找当前项目依赖的包)

    pipreqs pipreqs可以帮你找到当前项目的所有组件及其版本.就是当别人给你一个程序的时候,你要在自己电脑上运行起来,就需要安装程序所依赖的组件,总不能自己一个一个找吧. # 安装 pip3 ...