题目大意:

给定树的N个结点 编号为1到N 给定N-1条边的边权。

三种操作:

CHANGE k w:将第 k 条边的权值改成 w。

NEGATE x y:将x到y的路径上所有边的权值乘 -1。

QUERY x y:找出x到y的路径上所有边的最大权值。

单点更新 区间更新  区间查询

由于第二个操作是乘 -1 所以需要同时维护最大值和最小值

所以 lazy用来标记是否乘-1 0表示不乘-1 1表示乘-1

http://www.cnblogs.com/HDUjackyan/p/9279777.html

#include <stdio.h>
#include <algorithm>
#include <cstring>
using namespace std;
#define INF 0x3f3f3f3f
#define mem(i,j) memset(i,j,sizeof(i))
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define root 1,n,1 const int maxn=1e4+;
int n; struct IntervalTree {
struct EDGE { int to,ne; }e[maxn<<];
int head[maxn], tot;
void addE(int u,int v) {
e[tot].to=v;
e[tot].ne=head[u];
head[u]=tot++;
} int fa[maxn], son[maxn], dep[maxn], num[maxn];
int top[maxn], p[maxn], fp[maxn], pos; void init() {
tot=; mem(head,);
pos=; mem(son,);
} struct TREE {
int Max,Min,lazy;
}tree[maxn<<]; // --------------------以下是线段树------------------------- void pushUp(int rt) {
tree[rt].Max=max(tree[rt<<].Max,tree[rt<<|].Max);
tree[rt].Min=min(tree[rt<<].Min,tree[rt<<|].Min);
}
void pushDown(int rt,int m) {
if(m==) return;
if(tree[rt].lazy) {
tree[rt<<].Max*=-;
tree[rt<<].Min*=-;
tree[rt<<].lazy^=;
tree[rt<<|].Max*=-;
tree[rt<<|].Min*=-;
tree[rt<<|].lazy^=;
swap(tree[rt<<].Max,tree[rt<<].Min);
swap(tree[rt<<|].Max,tree[rt<<|].Min);
tree[rt].lazy=;
}
}
void build(int l,int r,int rt) {
if(l==r) {
tree[rt].Max=tree[rt].Min=tree[rt].lazy=;
return;
}
int m=(l+r)>>;
build(lson), build(rson);
pushUp(rt);
}
void update1(int k,int w,int l,int r,int rt) {
if(l==r) {
tree[rt].Max=tree[rt].Min=w;
tree[rt].lazy=;
return;
}
pushDown(rt,r-l+);
int m=(l+r)>>;
if(k<=m) update1(k,w,lson);
else update1(k,w,rson);
pushUp(rt);
}
void update2(int L,int R,int l,int r,int rt) {
if(L<=l && r<=R) {
tree[rt].Max*=-;
tree[rt].Min*=-;
tree[rt].lazy^=;
swap(tree[rt].Max,tree[rt].Min);
return ;
}
pushDown(rt,r-l+);
int m=(l+r)>>;
if(L<=m) update2(L,R,lson);
if(R>m) update2(L,R,rson);
pushUp(rt);
}
int query(int L,int R,int l,int r,int rt) {
if(L<=l && r<=R) return tree[rt].Max;
pushDown(rt,r-l+);
int m=(l+r)>>, res=-INF;
if(L<=m) res=max(res,query(L,R,lson));
if(R>m) res=max(res,query(L,R,rson));
pushUp(rt);
return res;
} // --------------------以上是线段树------------------------- // --------------------以下是树链剖分------------------------- void dfs1(int u,int pre,int d) {
dep[u]=d; fa[u]=pre; num[u]=;
for(int i=head[u];i;i=e[i].ne) {
int v=e[i].to;
if(v!=fa[u]) {
dfs1(v,u,d+);
num[u]+=num[v];
if(!son[u] || num[v]>num[son[u]])
son[u]=v;
}
}
}
void dfs2(int u,int sp) {
top[u]=sp; p[u]=++pos; fp[p[u]]=u;
if(!son[u]) return;
dfs2(son[u],sp);
for(int i=head[u];i;i=e[i].ne) {
int v=e[i].to;
if(v!=son[u] && v!=fa[u])
dfs2(v,v);
}
}
int queryPath(int x,int y) {
int fx=top[x], fy=top[y], ans=-INF;
while(fx!=fy) {
if(dep[fx]>dep[fy]) {
ans=max(ans,query(p[fx],p[x],root));
x=fa[fx];
} else {
ans=max(ans,query(p[fy],p[y],root));
y=fa[fy];
}
fx=top[x], fy=top[y];
}
if(x==y) return ans;
if(dep[x]>dep[y]) swap(x,y);
return max(ans,query(p[son[x]],p[y],root));
}
void updatePath(int x,int y) {
int fx=top[x], fy=top[y];
while(fx!=fy) {
if(dep[fx]>dep[fy]) {
update2(p[fx],p[x],root);
x=fa[fx];
} else {
update2(p[fy],p[y],root);
y=fa[fy];
}
fx=top[x], fy=top[y];
}
if(x==y) return ;
if(dep[x]>dep[y]) swap(x,y);
update2(p[son[x]],p[y],root);
} // --------------------以上是树链剖分------------------------- void initQTree() {
dfs1(,,), dfs2(,);
build(root);
}
}T;
int E[maxn][]; int main()
{
int t; scanf("%d",&t);
while(t--) {
scanf("%d",&n);
T.init();
for(int i=;i<n;i++) {
int u,v,w; scanf("%d%d%d",&u,&v,&w);
E[i][]=u, E[i][]=v, E[i][]=w;
T.addE(u,v), T.addE(v,u);
}
T.initQTree();
for(int i=;i<n;i++) {
if(T.dep[E[i][]]>T.dep[E[i][]])
swap(E[i][],E[i][]); //puts("OK");
T.update1(T.p[E[i][]],E[i][],root);
}
while() {
char s[]; scanf("%s",s);
if(s[]=='D') break;
int x,y; scanf("%d%d",&x,&y);
if(s[]=='Q')
printf("%d\n",T.queryPath(x,y));
else if(s[]=='C')
T.update1(T.p[E[x][]],y,root);
else if(s[]=='N')
T.updatePath(x,y);
}
} return ;
}

POJ 3237 /// 树链剖分 线段树区间修改(*-1)的更多相关文章

  1. POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 )

    POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 ) 题意分析 给出n个点,m个询问,和当前位置pos. 先给出n-1条边,u->v以及边权w. 然后有m个询问 ...

  2. 【bzoj2325】[ZJOI2011]道馆之战 树链剖分+线段树区间合并

    题目描述 给定一棵树,每个节点有上下两个格子,每个格子的状态为能走或不能走.m次操作,每次修改一个节点的状态,或询问:把一条路径上的所有格子拼起来形成一个宽度为2的长方形,从起点端两个格子的任意一个开 ...

  3. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

  4. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  5. BZOJ2243 (树链剖分+线段树)

    Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...

  6. POJ3237 (树链剖分+线段树)

    Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...

  7. Aizu 2450 Do use segment tree 树链剖分+线段树

    Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...

  8. bzoj2243[SDOI2011]染色 树链剖分+线段树

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 9012  Solved: 3375[Submit][Status ...

  9. B20J_2243_[SDOI2011]染色_树链剖分+线段树

    B20J_2243_[SDOI2011]染色_树链剖分+线段树 一下午净调这题了,争取晚上多做几道. 题意: 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成 ...

  10. 2019西北工业大学程序设计创新实践基地春季选拔赛 I Chino with Rewrite (并查集+树链剖分+线段树)

    链接:https://ac.nowcoder.com/acm/contest/553/I 思路:离线整棵树,用并查集维护下联通的情况,因为值只有60个,用2的x(1<=x<=60)次方表示 ...

随机推荐

  1. 22. Jmeter NON GUI模式

    一般情况下我们都是在NonGUI模式下运行jmeter.这样做有两个好处 节省系统资源,能够产生更大的负载 可以通过命令行参数对测试场景进行更精细的配置 需求:模拟5个用户同时访问百度首页的情况 步骤 ...

  2. UVA 1525 Falling Leaves

    题目链接:https://vjudge.net/problem/UVA-1525 题目链接:https://vjudge.net/problem/POJ-1577 题目大意 略. 分析 建树,然后先序 ...

  3. 设计模式四人帮(GOF)是什么?

    1994年,有四位作者:Erich Gamma,Richard Helm,Ralph Johnson和John Vlissides发表了一本题为<设计模式 - 可重用的面向对象软件元素>的 ...

  4. sip会话流程以及sip介绍(3)

    1.mtk_ims_mo_sip报文交互流程 log: 步骤1:ATD触发MO呼叫尝试步骤2:VDM选择ADS到IMS.步骤3:触发VoLTE UA来设置MO调用.步骤4:SIP信息到P-CSCF进行 ...

  5. springboot+mybatis+layUI

    1.idea快速搭建 2.生成后目录结构 3.引入layui-2.4.5 4.static/新建index.html,页面代码参考https://www.layui.com/doc/element/l ...

  6. 人工智能都能写Java了!这款插件让你编程更轻松

    最近在浏览技术社区,发现了一款 IDE 插件,利用人工智能技术帮助程序员高效写代码.节省开发时间,一下子勾起了我的好奇心. 下载之后,使用一番,确实蛮好的,可以有效提升编程效率. 这款插件叫:aixc ...

  7. C#实体类克隆

    public static T Clone<T>(T source) { if (!typeof(T).IsSerializable) { throw new ArgumentExcept ...

  8. zipinfo - 列出关于某个ZIP压缩包的详细信息

    总览 SYNOPSIS zipinfo [-12smlvhMtTz] file[.zip] [file(s) ...] [-x xfile(s) ...] unzip -Z [-12smlvhMtTz ...

  9. CentOS7.6编译安装Python-3.7.4

    安装步骤 1. 下载安装包.wget https://www.python.org/ftp/python/3.7.4/Python-3.7.4.tgz<说明>如果报SSL/TSL错误,则加 ...

  10. [HDU3333]Turing Tree

    莫队模板题... 不过树状数组也可以做...跟HH的项链几乎一模一样,离线询问,然后记录前缀,更新的时候把前缀删掉就好了,然而这题开long long,卡空间 //hgs AK IOI,IMO,ICH ...