正解:线性基

解题报告:

传送门!

这题其实就是个博弈论+线性基,,,而且博弈论还是最最基础的那个结论,然后线性基也是最最基础的那个板子$QwQ$

首先做这题的话需要一点点儿博弈论的小技能,,,这题的话就是,博弈论的入门经典题,有个结论是当开局的时候所有数异或起来不等于0的时候先手必胜

这儿瞎证下趴,,,因为是入门$so$还是比较$easy$证的来着$QwQ$

就考虑把所有数换算成二进制的

如果石子数异或和不为0,那么考虑如果先手能通过取石子数使石子数异或和为0的话,那么接下来要不就还存在石子数,要不就没有了

在没有的情况下就先手获胜了嘛,不说

如果还有,后手就一定会取,就一定会在取了之后异或起来不等于0

然后就又轮到先手,就又变成了异或和不为0的情况,就只要通过取石子使得石子数异或起来又=0就欧克了,这个显然就很$easy$了鸭,就是把所有不为0的位$i$的$2^{i}$加起来取走就可以了,显然这个值是小于等于最大堆的石子数的,太显然不证了$QAQ$

综上,就证完了$NIM$游戏的必胜战略:当开局所有数异或起来不等于0的时候先手必胜

然后这题有了这个结论其实就比较简单了鸭$QwQ$

就考虑能不能通过取石子使得开局异或起来一定不等于0

现在考虑把先手第一轮取走了石子之后剩余石子的状态搞一个线性基,然后显然的是如果有一个石子数是可以被异或出来的,先手就$GG$了,就后手可以通过直接取走那堆石子使得异或起来=0,这时候先手就死了

然后现在如果能证出当任意一个一个石子堆不可以被其他石子堆表示出来时,后手一定不能通过第二轮把初始状态变为所有数异或起来等于0,这题就变成一个线性基板子题了$QwQ$

下面瞎证下趴,,,$QwQ$

不想证了感觉是显然,,,就因为不存在$a_{1}$^$a_{2}$^$... = a_{n} $

所以不可能有拿走了$ a_{n} $之后异或和=0的情况

然后证完之后,就直接贪心从大到小能加就加,不说了挺$easy$的还是$QwQ$,不能$get$的打开那个板子题的题解趴

  1. #include<bits/stdc++.h>
  2. using namespace std;
  3. #define il inline
  4. #define int long long
  5. #define gc getchar()
  6. #define ri register int
  7. #define rb register bool
  8. #define rc register char
  9. #define rp(i,x,y) for(ri i=x;i<=y;++i)
  10. #define my(i,x,y) for(ri i=x;i>=y;--i)
  11.  
  12. const int N=1e5+;
  13. int n,ston[N],tot;
  14. struct xxj
  15. {
  16. int a[];
  17. il bool insrt(ri x)
  18. {
  19. my(i,,)
  20. if(x&(<<i))
  21. {
  22. if(a[i])x^=a[i];
  23. else return a[i]=x,;
  24. }
  25. return ;
  26. }
  27. }gdgs;
  28.  
  29. il int read()
  30. {
  31. ri x=;rb y=;rc ch=gc;
  32. while(ch!='-' && (ch>'' || ch<''))ch=gc;
  33. if(ch=='-')ch=gc,y=;
  34. while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
  35. return y?x:-x;
  36. }
  37. il bool cmp(ri gd,ri gs){return gd>gs;}
  38.  
  39. main()
  40. {
  41. n=read();rp(i,,n)ston[i]=read();sort(ston+,ston+n+,cmp);rp(i,,n)if(!gdgs.insrt(ston[i]))tot+=ston[i];printf("%lld\n",tot);
  42. return ;
  43. }

洛谷$P$4301 $[CQOI2013]$新$Nim$游戏 线性基+博弈论的更多相关文章

  1. BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论

    BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...

  2. BZOJ 3105 [CQOI2013]新Nim游戏 ——线性基

    [题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即 ...

  3. BZOJ3105:[CQOI2013]新Nim游戏(线性基,贪心)

    Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴 ...

  4. [CQOI2013]新Nim游戏 线性基

    题面 题面 题解 首先我们知道nim游戏先手必败当且仅当所有石堆异或和为0,因此我们的目标就是要使对手拿石堆的时候,无论如何都不能使剩下的石堆异或和为0. 对于一个局面,如果我们可以选取一些可以凑出0 ...

  5. BZOJ 3105: [cqoi2013]新Nim游戏(线性基)

    解题思路 \(nim\)游戏先手必胜的条件是异或和不为\(0\),也就是说第一个人拿走了若干堆后不管第二个人怎么拿都不能将剩余堆的异或和变成\(0\).考虑线性基,其实就是每个数对线性基都有贡献,任何 ...

  6. 洛谷P4151 最大XOR和路径 [WC2011] 线性基+图论

    正解:线性基+图论 解题报告: 传送门 首先可以思考一下有意义的路径会是什么样子,,,那就一定是一条链+一些环 挺显然的因为一条路径原路返回有没有意义辣?所以一定是走一条链+一些环(当然也可以麻油环, ...

  7. BZOJ.3105.[CQOI2013]新Nim游戏(线性基 贪心 博弈论)

    题目链接 如果后手想要胜利,那么在后手第一次取完石子后 可以使石子数异或和为0.那所有数异或和为0的线性基长啥样呢,不知道.. 往前想,后手可以取走某些石子使得剩下石子异或和为0,那不就是存在异或和为 ...

  8. 洛谷P4151 [WC2011] 最大XOR和路径 [线性基,DFS]

    题目传送门 最大XOR和路径 格式难调,题面就不放了. 分析: 一道需要深刻理解线性基的题目. 好久没打过线性基的题了,一开始看到这题还是有点蒙逼的,想了几种方法全被否定了.还是看了大佬的题解才会做的 ...

  9. 洛谷P3292 [SCOI2016]幸运数字(倍增+线性基)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 第一眼:这不会是个倍增LCA暴力合并线性基吧…… 打了一发……A了? 所以这真的是个暴力倍增LCA合并线性基么…… ps:据某大佬说其实可以离线之后 ...

随机推荐

  1. Flask学习之四 数据库

    英文博客地址:http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-iv-database 中文翻译地址:http://ww ...

  2. android service中stub作用是什么?

    AIDL(android 接口描述语言)是一个IDL语言,它可以生成一段代码,可以使在一个android设备上运行的两个进程使用内部通信进程进行交互.如果你需要在一个进程中(例如:在一个Activit ...

  3. bert 硬件要求

    https://github.com/google-research/bert BERT ***** New May 31st, 2019: Whole Word Masking Models *** ...

  4. Simpson公式的应用(HDU 1724/ HDU 1071)

    辛普森积分法 - 维基百科,自由的百科全书 Simpson's rule - Wikipedia, the free encyclopedia 利用这个公式,用二分的方法来计算积分. 1071 ( T ...

  5. name和code的相关设置

    cdm中同时显示name和code tools->或右键Displace preferences->Entity->Advanced->Attributes->右侧Lis ...

  6. Core Data 数据出现Fault

    I am mapping Json Data from Server using Restkit and I am Displaying those data by fetching from db. ...

  7. laravel asset()函数

    asset() 使用当前请求的scheme(HTTP或HTTPS)为前端资源生成一个URL: $url = asset('img/photo.jpg'); laravel自带了laravel-mix, ...

  8. Python--day70--ORM查询练习

    ORM查询练习: import os import sys if __name__ == '__main__': # 加载Djang00项目的配置信息 os.environ.setdefault(&q ...

  9. Python--day38--进程同步控制的---锁\信号量\事件的方法名

  10. 【ts】 VSCode自动编译TypeScript终端报错

    一.点击终端--运行任务--选择tsc:监视 - tsconfig.json后,终端报出了如下错误:error TS5058: The specified path does not exist 在网 ...