PP: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications
Problem: unsupervised anomaly detection
for seasonal KPIs in web applications.
Donut: an unsupervised anomaly detection algorithm based on VAE.
Background:
有的time series data have seasonal patterns occurring at regular intervals.
Data: KPI shapes: seasonal patterns and local variations, noises.
"abnormal": anomalies and missing points; detect missing points is straightforward.
Existing methods suffer from: 这里面简直是胡说八道。
- the hassle麻烦 of algorithm picking
- parameter tuning
- heavy reliance on labels
- unsatisfying performance
- lack of theoretical foundations
Methodology:
VAE is not a sequential model!!!!!!!!!!!!!!!! thus they apply sliding windows.
在训练时,the anomalies and missing points in a testing window x can bring bias to the mapped z, and further make the reconstruction probability inaccurate.
如何避免anomalies and missing points对训练造成的biase:
- missing points. adopt the MCMC-based missing data imputation technique with the trained VAE. 即模拟出missing points的可能值,然后用可能值,代替missing points 的值。
- anomalies
All the algorithms evaluated in this paper compute one anomaly score for each point. A threshold can be chosen to do the decision: if the score for a point is greater than the threshold, an alert should be triggered
PP: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications的更多相关文章
- PP: Time series anomaly detection with variational autoencoders
Problem: unsupervised anomaly detection Model: VAE-reEncoder VAE with two encoders and one decoder. ...
- PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network
PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...
- Auto Encoder用于异常检测
对基于深度神经网络的Auto Encoder用于异常检测的一些思考 from:https://my.oschina.net/u/1778239/blog/1861724 一.前言 现实中,大部分数据都 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems
这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...
- Anomaly Detection
数据集中的异常数据通常被成为异常点.离群点或孤立点等,典型特征是这些数据的特征或规则与大多数数据不一致,呈现出“异常”的特点,而检测这些数据的方法被称为异常检测. 异常数据根据原始数据集的不同可以分为 ...
- 基于高斯分布的异常检测(Anomaly Detection)算法
记得在做电商运营初期,每每为我们频道的促销活动锁取得的“超高”销售额感动,但后来随着工作的深入,我越来越觉得这里面水很深.商家运营.品类运营不断的通过刷单来获取其所需,或是商品搜索排名,或是某种kpi ...
- Time Series Anomaly Detection
这里有个2015年的综述文章,概括的比较好,各种技术的适用场景. https://iwringer.wordpress.com/2015/11/17/anomaly-detection-concep ...
- Isolation-based Anomaly Detection
Anomalies are data points that are few and different. As a result of these properties, we show that, ...
- anomaly detection algorithm
anomaly detection algorithm 以上就是异常监测算法流程
随机推荐
- centos 配置自动启动(nginx为例)
[Unit] Description=nginx After=network.target [Service] Type=forking ExecStart=/usr/local/nginx/sbin ...
- 从数组中找到topK的元素(序号)
问题: 在n个数中找出最大的k个数. 多次求min()或求max() 最简单的方法是对大小为k的数组进行n次求min计算(或者对大小为n的数组进行k次求max计算)最后能够找出最大k个数.复杂度是O( ...
- WeChall_ Training: Stegano I (Training, Stegano)
This is the most basic image stegano I can think of. 解题: 一张小图片,文本方式打开.
- ARTS Week 10
Dec 30, 2019 ~ Jan 5, 2020 Algorithm Problem 88 Merge Sorted Array (合并两个有序数组) 题目链接 题目描述:给定两个有序数组 num ...
- 《N诺机试指南》(五)进制转化
进制转化类题目类型: 代码详解及注释解答: //进制转化问题 #include <bits/stdc++.h> using namespace std; int main(){ // 1 ...
- thinkphp远程执行漏洞的本地复现
thinkphp远程执行漏洞的本地复现 0X00漏洞简介 由于ThinkPHP5 框架控制器名 没有进行足够的安全监测,导致在没有开启强制路由的情况下,可以伪装特定的请求可以直接Getshell(可以 ...
- 本地linux搭建的WordPress升级时需要输入FTP信息
转自:https://blog.csdn.net/weixin_43837883/article/details/88751871 这是因为目录权限不正确所致 解决方法: 1.使用命令chown -R ...
- npm安装Vue.js
我之前是有安装过npm的 使用淘宝 NPM 镜像 $ npm install -g cnpm --registry=https://registry.npm.taobao.org 查看nmp版本 $ ...
- SQLServer之查询当前服务器下所有目录视图表
SQL脚本 /*************1:删除临时表*************/ if exists(select * from tempdb..sysobjects where id=object ...
- 虚拟机VMware官网最新版附密钥,kali,ubuntu,centos,deepin迅雷下载地址。
以下全部都是官网的迅雷复制链接 版本都是当前时间可下载的最新版本 VMware官网迅雷下载链接: https://download3.vmware.com/software/wkst/file/VMw ...