PP: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications
Problem: unsupervised anomaly detection
for seasonal KPIs in web applications.
Donut: an unsupervised anomaly detection algorithm based on VAE.
Background:
有的time series data have seasonal patterns occurring at regular intervals.
Data: KPI shapes: seasonal patterns and local variations, noises.
"abnormal": anomalies and missing points; detect missing points is straightforward.
Existing methods suffer from: 这里面简直是胡说八道。
- the hassle麻烦 of algorithm picking
- parameter tuning
- heavy reliance on labels
- unsatisfying performance
- lack of theoretical foundations
Methodology:
VAE is not a sequential model!!!!!!!!!!!!!!!! thus they apply sliding windows.
在训练时,the anomalies and missing points in a testing window x can bring bias to the mapped z, and further make the reconstruction probability inaccurate.
如何避免anomalies and missing points对训练造成的biase:
- missing points. adopt the MCMC-based missing data imputation technique with the trained VAE. 即模拟出missing points的可能值,然后用可能值,代替missing points 的值。
- anomalies
All the algorithms evaluated in this paper compute one anomaly score for each point. A threshold can be chosen to do the decision: if the score for a point is greater than the threshold, an alert should be triggered
PP: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications的更多相关文章
- PP: Time series anomaly detection with variational autoencoders
Problem: unsupervised anomaly detection Model: VAE-reEncoder VAE with two encoders and one decoder. ...
- PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network
PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...
- Auto Encoder用于异常检测
对基于深度神经网络的Auto Encoder用于异常检测的一些思考 from:https://my.oschina.net/u/1778239/blog/1861724 一.前言 现实中,大部分数据都 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems
这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...
- Anomaly Detection
数据集中的异常数据通常被成为异常点.离群点或孤立点等,典型特征是这些数据的特征或规则与大多数数据不一致,呈现出“异常”的特点,而检测这些数据的方法被称为异常检测. 异常数据根据原始数据集的不同可以分为 ...
- 基于高斯分布的异常检测(Anomaly Detection)算法
记得在做电商运营初期,每每为我们频道的促销活动锁取得的“超高”销售额感动,但后来随着工作的深入,我越来越觉得这里面水很深.商家运营.品类运营不断的通过刷单来获取其所需,或是商品搜索排名,或是某种kpi ...
- Time Series Anomaly Detection
这里有个2015年的综述文章,概括的比较好,各种技术的适用场景. https://iwringer.wordpress.com/2015/11/17/anomaly-detection-concep ...
- Isolation-based Anomaly Detection
Anomalies are data points that are few and different. As a result of these properties, we show that, ...
- anomaly detection algorithm
anomaly detection algorithm 以上就是异常监测算法流程
随机推荐
- 小白学习VUE第二课:环境搭建 VUE Node.js VSCode template模板
环境搭建 VUE Node.js VSCode template模板: 首先安装node:http://www.runoob.com/nodejs/nodejs-install-setup.html ...
- WampServer 更换 mysql
下载另外版本的mysql,复制到 wamp/bin,初始化号 修改wamp 的/wampmanager.conf 复制相关配置文件 [mysqloptions] mysqlPortUsed = &qu ...
- 票据传递之MS14-068
MS14-068是密钥分发中心(KDC)服务中的Windows漏洞.它允许经过身份验证的用户在其Kerberos票证(TGT)中插入任意PAC(表示所有用户权限的结构).该漏洞位于kdcsvc.dll ...
- mongodb搭建带auth的主从
1:下载mongodb包(mongodb3.4的方法一样,就是mongodb内用户设置到时候不同用户对应不同库,验证时得先创建某个库到用户参考http://ibruce.info/2015/03/03 ...
- iptables 实例
开启ip段192.168.1.0/24端的80口 开启ip段211.123.16.123/24端ip段的80口 # iptables -I INPUT -p tcp --dport 80 -j DRO ...
- OSPF配置实验(一)
单区域OSPF 命令: R1(config)#router ospf 1 //启动OSPF进程 R1(config-router)#router-id 1.1.1.1 // ...
- [RHEL8]开启BBR
# sysctl net.ipv4.tcp_congestion_control net.ipv4.tcp_congestion_control = cubic # sysctl net.ipv4.t ...
- C语言基础二 练习
指出正确标识符 命名 l 只能由26个英文字母的大小写.10个阿拉伯数字0~9.下划线_组成 l 严格区分大小写,比如test和Test是2个不同的标识符 l 不能以数字开头 l 不可以使用关键字作为 ...
- 前端html,css考点
1, 内联元素,块级元素相关知识点 参考链接:https://edu.aliyun.com/a/103378 (1)置换元素 概念:浏览器根据元素的标签和属性,来决定元素的具体显示内容.<img ...
- codewars--js--vowels counting+js正则相关知识
问题描述: Return the number (count) of vowels in the given string. We will consider a, e, i, o, and u as ...