「题解」:[AHOI2012] 树屋阶梯
A掉了第一道题然后就去肝第四题,被路过的Larry大神看到了。
L:你怎么还没过掉第三题? 我:…… L:快我帮你过掉!
他拉下来我第一题的码,手改了两个参数,半分钟后:AC ……
然后我就理所当然的去颓废了。
Miemeng:你别颓了!
818:第三题你能推出来为啥是卡特兰吗?
我:……
然后一场NC气息十足的推(颓?)就开始了……
^废话^
题面:
题目描述:
暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题。由于地上露营湿气重,必须选择在高处的树屋露营。小龙分配的树屋建立在一颗高度为N+1尺(N为正整数)的大树上,正当他发愁怎么爬上去的时候,发现旁边堆满了一些空心四方钢材(如图1.1),经过观察和测量,这些钢材截面的宽和高大小不一,但都是1尺的整数倍,教官命令队员们每人选取N个空心钢材来搭建一个总高度为N尺的阶梯来进入树屋,该阶梯每一步台阶的高度为1尺,宽度也为1尺。如果这些钢材有各种尺寸,且每种尺寸数量充足,那么小龙可以有多少种搭建方法?(注:为了避免夜里踏空,钢材空心的一面绝对不可以向上。)
输入格式:
一个正整数 N(1≤N≤500),表示阶梯的高度
输出格式:
一个正整数,表示搭建方法的个数。(注:搭建方法个数可能很大。)
输入样例:
输出样例:
题解:
不靠谱大神lyl:这不是显然吗,样例3、5,卡特兰啊!
稍靠谱大神xkl:你推一下1的情况和2的情况,这就是卡特兰啊!
emmmm……
不管他们我们自己推:
写出来卡特兰的式子:$h(n)=h(n-1)*h(0)+h(n-2)*h(1)+……+h(0)*h(n-1) (n>=2)$
为了方便,我们把一个$n$层高的用$n$块钢材搭建而成的阶梯称为$n$阶阶梯
我们发现:当前的$n$阶阶梯完全可以由左上角的一个$i$阶阶梯和一个右下角的$n-i-1$阶阶梯,再拉过来一块合法钢材组成。
^有图有真相^
为啥是一块??依据上图,我们发现,黄色的二阶阶梯和蓝色的二阶阶梯已经占用了两块合法钢材,
然而一个$n$阶阶梯只能由n块合法钢材搭建而成。
于是我们愉悦的推出一个式子:(设$f(i)$为搭建一个$i$阶阶梯使用$i$块钢材的总方案数)
$f(i)=f(0)*f(n-1)+f(1)*f(n-2)+……+f(n-1)*f(0)$
和卡特兰的式子一毛一样有没有!于是我们就能愉快的利用卡特兰来解决这个问题了!
代码留坑
「题解」:[AHOI2012] 树屋阶梯的更多相关文章
- [AHOI2012]树屋阶梯 题解(卡特兰数)
[AHOI2012]树屋阶梯 Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处的树屋露营. ...
- P2532 [AHOI2012]树屋阶梯
题目:P2532 [AHOI2012]树屋阶梯 思路: 打表之后不难看出是裸的Catalan数.简单证明一下: 对于任意一种合法方案,都可以表示为在左下角先放一个\(k*(n+1-k),k\in[1, ...
- BZOJ 2822: [AHOI2012]树屋阶梯 [Catalan数 高精度]
2822: [AHOI2012]树屋阶梯 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 779 Solved: 453[Submit][Status] ...
- 【BZOJ 2822】2822: [AHOI2012]树屋阶梯(卡特兰数+高精度)
2822: [AHOI2012]树屋阶梯 Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处 ...
- 洛谷P2532 [AHOI2012]树屋阶梯(Catalan数)
P2532 [AHOI2012]树屋阶梯 题目描述 输入输出格式 输入格式: 一个正整数N(1<=N<=500),表示阶梯的高度. 输出格式: 一个正整数,表示搭建方法的个数.(注:搭建方 ...
- bzoj2822[AHOI2012]树屋阶梯(卡特兰数)
2822: [AHOI2012]树屋阶梯 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 879 Solved: 513[Submit][Status] ...
- 「题解」「美团 CodeM 资格赛」跳格子
目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...
- 「题解」「HNOI2013」切糕
文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...
- 「题解」JOIOI 王国
「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...
随机推荐
- class3_Entry & Text 输入和文本框
程序总体运行效果图如下; #!/usr/bin/env python # -*- coding:utf-8 -*- # -------------------------------------- ...
- LOJ #113. 最大异或和 (线性基)
题目链接:#113. 最大异或和 题目描述 这是一道模板题. 给由 \(n\) 个数组成的一个可重集 \(S\),每次给定一个数 \(k\),求一个集合 \(T \subseteq S\),使得集合 ...
- 如何在Spring Boot 中动态设定与执行定时任务
本篇文章的目的是记录并实现在Spring Boot中,动态设定与执行定时任务. 我的开发项目是 Maven 项目,所以首先需要在 pom.xml 文件中加入相关的依赖.依赖代码如下所示: <de ...
- 初探分布式环境的指挥官ZooKeeper
目录 1. 从单机到集群,分布式环境中的挑战 1.1 集中式的特点 1.2 集中式的痛点 1.3 从单体到SOA的转变 1.4 分布式服务总体框架 1.5 分布式应用概述 2. ZK基本概念及核心原理 ...
- Parallels Desktop Centos 设置IP
参考链接 Parallels Desktop虚拟的Centos系统设置静态IP连网 https://blog.csdn.net/hotdust/article/details/53812953#com ...
- springboot中参数校验
<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring- ...
- __typeof与typeof
其实之前在stackoverflow就看过一篇讲的比较详细的, https://stackoverflow.com/questions/14877415/difference-between-type ...
- fso文件夹操作用法实操
Sub 订单转换()Application.ScreenUpdating = FalseOn Error Resume Next Dim fso, fl, m%, n%, p%, q& Dim ...
- 笔记23 搭建Spring MVC
搭建一个最简单的SpringMVC示例 1.配置DispatcherServlet DispatcherServlet是Spring MVC的核心.在这里请求会第一次 接触到框架,它要负责将请求路由到 ...
- sql count 函数用法
count(*) 会查询所有记录数,,包括为null值的数据: count(column)不会包含 column值为null的情况: count(1) 和 count(*)相同,,不同的是,,mysq ...