Luogu P1073 最优贸易(最短路)
题意
题目描述
\(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这\(m\)条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为\(1\)条。
\(C\)国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。
商人阿龙来到\(C\)国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设\(C\)国\(n\)个城市的标号从\(1 \sim n\),阿龙决定从\(1\)号城市出发,并最终在\(n\)号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有\(n\)个城市。阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品――水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来\(C\)国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。
假设\(C\)国有\(5\)个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路为单向通行,双向箭头表示这条道路为双向通行。

假设\(1 \sim n\)号城市的水晶球价格分别为\(4,3,5,6,1\)。
阿龙可以选择如下一条线路:\(1\)->\(2\)->\(3\)->\(5\),并在\(2\)号城市以\(3\)的价格买入水晶球,在\(3\)号城市以\(5\)的价格卖出水晶球,赚取的旅费数为\(2\)。
阿龙也可以选择如下一条线路\(1\)->\(4\)->\(5\)->\(4\)->\(5\),并在第\(1\)次到达\(5\)号城市时以\(1\)的价格买入水晶球,在第\(2\)次到达\(4\)号城市时以\(6\)的价格卖出水晶球,赚取的旅费数为\(5\)。
现在给出\(n\)个城市的水晶球价格,\(m\)条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。
输入输出格式
输入格式:
第一行包含\(2\)个正整数\(n\)和\(m\),中间用一个空格隔开,分别表示城市的数目和道路的数目。
第二行\(n\)个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这\(n\)个城市的商品价格。
接下来\(m\)行,每行有\(3\)个正整数\(x,y,z\),每两个整数之间用一个空格隔开。如果\(z=1\),表示这条道路是城市\(x\)到城市\(y\)之间的单向道路;如果\(z=2\),表示这条道路为城市\(x\)和城市\(y\)之间的双向道路。
输出格式:
一个整数,表示最多能赚取的旅费。如果没有进行贸易,则输出\(0\)。
输入输出样例
输入样例:
5 5
4 3 5 6 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2
输出样例:
5
说明
【数据范围】
输入数据保证\(1\)号城市可以到达\(n\)号城市。
对于\(10 \%\)的数据,\(1≤n≤6\)。
对于\(30 \%\)的数据,\(1≤n≤100\)。
对于\(50 \%\)的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。
对于\(100 \%\)的数据,\(1 \leq n \leq 100000\),\(1 \leq m \leq 500000\),\(1 \leq x\),\(y \leq n\),\(1 \leq z \leq 2\),\(1 \leq\)各城市水晶球价格\(\leq 100\)。
\(NOIP \ 2009\)提高组 第三题
思路
分层图板子题贼简单。 --huyufeifei
其实这题跟分层图没有半点关系,直接跑最短路就好了。
首先要看能从起点走到哪里,然后我们就可以选个最便宜地方来买水晶球;然后要看能从哪里走到终点,然后我们就可以选个最贵的地方来卖水晶球。这样,我们就可以枚举每个点,看最多能赚取的路费。
而查找这样的点时,我们可以用最短路算法,利用点权来松弛点权,这和边权的松弛操作是类似的。详情就看我漂亮的代码了。
AC代码
#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> PII;
const int MAXN=1e5+5;
const int MAXM=1e6+5;
int n,m,ans,a[MAXN],d[MAXN],__d[MAXN];
int cnt,top[MAXN],to[MAXM],nex[MAXM];
int __cnt,__top[MAXN],__to[MAXM],__nex[MAXM];
bool v[MAXN],__v[MAXN];
int read()
{
int re=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
return re;
}
void add_edge(int x,int y){to[++cnt]=y,nex[cnt]=top[x],top[x]=cnt;}
void __add_edge(int x,int y){__to[++__cnt]=y,__nex[__cnt]=__top[x],__top[x]=__cnt;}
void Dijkstra()
{
memset(d,0x3f,sizeof d);
d[1]=a[1];
priority_queue<PII,vector<PII>,greater<PII> >Q;
Q.push(make_pair(d[1],1));
while(!Q.empty())
{
int now=Q.top().second;Q.pop();
if(v[now]) continue;
v[now]=true;
for(int i=top[now];i;i=nex[i])
if(!v[to[i]])
{
d[to[i]]=min(d[now],a[to[i]]);
Q.push(make_pair(d[to[i]],to[i]));
}
}
}
void __Dijkstra()
{
__d[n]=a[n];
priority_queue<PII>Q;
Q.push(make_pair(__d[n],n));
while(!Q.empty())
{
int now=Q.top().second;Q.pop();
if(__v[now]) continue;
__v[now]=true;
for(int i=__top[now];i;i=__nex[i])
if(!__v[__to[i]])
{
__d[__to[i]]=max(__d[now],a[__to[i]]);
Q.push(make_pair(__d[__to[i]],__to[i]));
}
}
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++) a[i]=read();
while(m--)
{
int x=read(),y=read(),z=read();
add_edge(x,y),__add_edge(y,x);
if(z==2) add_edge(y,x),__add_edge(x,y);
}
Dijkstra();
__Dijkstra();
for(int i=1;i<=n;i++) ans=max(ans,__d[i]-d[i]);
printf("%d",ans);
return 0;
}
Luogu P1073 最优贸易(最短路)的更多相关文章
- 洛谷 P1073 最优贸易 最短路+SPFA算法
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 P1073 最优贸易 题目描述 C国有 $ n $ 个大城市和 ...
- Luogu P1073 最优贸易
题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双 ...
- Luogu P1073 最优贸易【最短路/建反图】 By cellur925
题目传送门 这么经典的题目,还是看了lyd的题解....唉难过. 一句话题意:在一张点有全都的图上找一条从1到n的路径,存在两个点p,q(p<q),使val[q]-val[p]最大. 给出的图是 ...
- 【luogu P1073 最优贸易】 题解
题目链接:https://www.luogu.org/problemnew/show/P1073 对于状态量相互影响的题目,分层图是个不错的想法. 考虑在题目中分为: 不交易: 直接从1到n出去,为0 ...
- [NOIp2009] luogu P1073 最优贸易
md 我发现跟你们聊天贼没意思. 题目描述 我觉得描述挺好,不改了吧. Solution 容易发现这是道 dfs + DP 的乱搞题. 设 f[x]f[x]f[x] 表示到 xxx 这个点的最优答案. ...
- P1073 最优贸易 建立分层图 + spfa
P1073 最优贸易:https://www.luogu.org/problemnew/show/P1073 题意: 有n个城市,每个城市对A商品有不同的定价,问从1号城市走到n号城市可以最多赚多少差 ...
- 洛谷 P1073 最优贸易 解题报告
P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...
- 洛谷P1073 最优贸易==codevs1173 最优贸易
P1073 最优贸易 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一 ...
- 洛谷——P1073 最优贸易
P1073 最优贸易 n 个城市间以 m 条有向道路连接, 小 T 从 1 号城市出发, 将要去往 n 号城市.小 T 观察到一款商品 Z 在不同的城市的价格可能不尽相同,小 T 想要在旅行中的某一个 ...
随机推荐
- python语句结构(if判断语句)
一.python语句结构分类 条件控制语句:if 语句 if....elif语句 if嵌套 循环语句:while语句 for循环 控制语句:break.continue.pass语句 二.pyt ...
- Java开发系列-Cookie与Session会话技术
概述 会话技术:当用户打开浏览器的时候,访问不同的资源,直到用户将浏览器关闭,可以认为这是一次会话.会话技术产生是由于Http请求是一个无状态的协议,它不会记录上次访问的内容,用户在访过程中难免产生一 ...
- axios——post请求时把对象obj数据转为formdata格式
转载自:https://blog.csdn.net/feizhong_web/article/details/80514436 在调用后台接口的时候,上传报名信息,利用axios 的post请求,发 ...
- 网站PC端和移动端,用户通过设备识别
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <!--<me ...
- 解决ajax请求跨域
跨域大部分需要通过后台解决,引起跨域的原因: 3个问题同时满足 才可能产生跨域问题,即跨域(协议,主机名,端口号中有一个不同就产生跨域) 下面是解决方法 方法一 // ajax请求跨域 /* *解决a ...
- lync sdk 二次开发
1.关于 UI Suppression Mode http://blog.thoughtstuff.co.uk/2014/08/the-6-things-you-need-to-know-about- ...
- MVVM test
示例代码 public class RegisterUserViewModel { public UserInfo userInfo { get; set; } public ICommand Cli ...
- IDEA将代码推送至远程GitHub仓库
1 在项目根路径下添加.gitignore文件 2 创建本地git仓库 3 git add操作 快捷键 ctrl+alt+a 4 git commit操作 快捷键ctrl+k 5 git push操作 ...
- 期望——邮票收集问题lightoj1342
邮票手机问题: 有n种类型的邮票,问将所有的类型的邮票全部收集起来所要的收集次数期望是多少. 设dp[i]为已经收集了i种类型的票,还要收集n-i种的次数的期望. dp[n]=0; 递推式: dp[i ...
- 要原版 jdk-6u14-windows-i586.exe
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase6-419409.html#j ...