《算法导论》第二章demo代码实现(Java版)

前言

表示晚上心里有些不宁静,所以就写一篇博客,来缓缓。囧

拜读《算法导论》这样的神作,当然要做一些练习啦。除了练习题与思考题那样的理论思考,也离不开编码的实践。

所以,后面每个章节,我都会尽力整理出章节中涉及的算法的Java代码实现。

二分查找

算法实现


package tech.jarry.learning.test.algorithms.binarysearch; public class BinarySearch { public static int binarySearch(int[] array, int target) {
return binarySearch(array, target, 0, array.length - 1);
} // 二分查找,要求输入的线性表必须是顺序的
public static int binarySearch(int[] array, int target, int startIndex, int endIndex) { if (endIndex > startIndex) {
int middleIndex = (startIndex + endIndex) / 2; if (target < array[middleIndex]){
return binarySearch(array, target, startIndex, middleIndex);
} else if (target > array[middleIndex]) {
return binarySearch(array, target, middleIndex + 1, endIndex);
} else if (target == array[middleIndex]) {
return middleIndex;
}
} return -1;
}
}

算法测试


package tech.jarry.learning.test.algorithms.binarysearch; public class BinarySearchTest { public static void main(String[] args) {
int[] testArray = new int[] {3, 5, 7, 2, 4, 1, 5, 0, 9, 18 ,12}; System.out.println(BinarySearch.binarySearch(testArray, 100));
}
}

结果输出

-1

这表示没有找到目标数据,可以将测试类中的target修改为其他数字。

冒泡排序

算法实现


package tech.jarry.learning.test.algorithms.bubblesort; public class BubbleSort { public static int[] bubbleSort(int[] array) {
for (int i = 0; i < array.length; i++){
for (int j = i; j < array.length; j++) {
if (array[j] < array[i]) {
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
}
return array;
}
}

算法测试


package tech.jarry.learning.test.algorithms.bubblesort; import java.util.Arrays; public class BubbleSortTest {
public static void main(String[] args) { int[] testArray = new int[] {3, 5, 7, 2, 4, 1, 5, 0, 9, 18 ,12}; System.out.println(Arrays.toString(BubbleSort.bubbleSort(testArray)));
}
}

结果输出

[0, 1, 2, 3, 4, 5, 5, 7, 9, 12, 18]

插入排序

算法实现


package tech.jarry.learning.test.algorithms.insertsort; import java.util.Arrays; public class InsertionSort { public static int[]insertSort(int[] originArray) {
// 从数组的第二个元素开始进行比较(总不能第一个元素和第一个元素自己比较大小吧)
for (int j = 1; j < originArray.length; j++) {
// 获取当前元素的值
int key = originArray[j];
// 获取前一个元素的下标
int i = j - 1;
// 将key值前移(即将遇到的每个大于key的元素后移)
while (i >= 0 && originArray[i] > key) {
originArray[i + 1] = originArray[i];
i = i - 1;
}
// 直到遇到originArray[i] <= key,才对i+1进行赋值(而i+1元素之前已经后移复制了,即i+2位置保存了i+1位置的值)
originArray[i + 1] =key;
} return originArray;
} public static int[] insertSortProWithBinarySearch(int[] array) {
// 如果数据组织形式是数组,那么即使采用二分查找优化,底层的数组元素移动,依旧会导致最终的时间复杂度变为n^2,而不是期待的n*lgn
return null;
}
}

算法测试


package tech.jarry.learning.test.algorithms.insertsort; import java.util.Arrays; public class InsertionSortTest {
// test
public static void main(String[] args) {
int[] originArray = new int[]{9, 6, 4, 5, 8};
int[] resultArray = InsertionSort.insertSort(originArray);
System.out.println(Arrays.toString(resultArray));
}
}

结果输出

[4, 5, 6, 8, 9]

归并排序

算法实现

这个代码的实现,可能内容比较多。一方面是由于方法提取(提取哨兵创建的操作),另一方面是由于增加了练习题中提到的无哨兵归并排序的实现(在mergeSort方法中,可以自由选择是否使用哨兵)。


package tech.jarry.learning.test.algorithms.mergesort; import java.util.Arrays; /**
* 归并排序
*/
public class MergeSort { public static int[] mergeSort(int[] array) {
return mergeSort(array, 0, array.length - 1);
} public static int[] mergeSort(int[] array, int startIndex, int endIndex) {
if (startIndex < endIndex) {
int middleIndex = startIndex + (endIndex - startIndex) / 2;
array = mergeSort(array, startIndex, middleIndex);
array = mergeSort(array, middleIndex + 1, endIndex); // 使用哨兵,进行合并
// return merge(array, startIndex, middleIndex, endIndex);
// 不适用哨兵,进行合并
return noSentinelMerge(array, startIndex, middleIndex, endIndex);
} // 如果startIndex = endIndex,表示array只有一个元素
return array;
} private static int[] merge(int[] array, int startIndex, int middleIndex, int endIndex) {
int[] sentinelLeftArray = createSentinelArray(array, startIndex, middleIndex);
int[] sentinelRightArray = createSentinelArray(array, middleIndex + 1, endIndex); for (int i = 0, m = 0, n = 0; i < endIndex - startIndex + 1; i++) {
if (sentinelLeftArray[m] < sentinelRightArray[n]) {
// 这里千万别忘了startIndex,因为不同分支的起点不同
array[startIndex + i] = sentinelLeftArray[m++];
} else {
array[startIndex + i] = sentinelRightArray[n++];
}
// 不用考虑两个Integer.MAX_VALUE,因为最后两个数组分别剩下的元素必然是这两个哨兵元素
}
return array;
} private static int[] createSentinelArray(int[] array, int startIndex, int endIndex) {
int length = endIndex - startIndex + 1;
int[] sentinelArray = new int[length + 1];
for (int i = 0; i < length; i++) {
sentinelArray[i] = array[startIndex + i];
}
sentinelArray[endIndex - startIndex + 1] = Integer.MAX_VALUE;
return sentinelArray;
} // p.22_practise2.3-2 在不使用哨兵的前提下,进行归并排序的合并操作
private static int[] noSentinelMerge(int[] array, int startIndex, int middleIndex, int endIndex) {
int[] leftArray = createNonSentinelBranchArray(array, startIndex, middleIndex);
int[] rightArray = createNonSentinelBranchArray(array, middleIndex + 1, endIndex); for (int i = 0, m = 0, n = 0; i < endIndex - startIndex + 1; i++) {
if (leftArray[m] < rightArray[n]) {
array[startIndex + i] = leftArray[m++];
if (m == leftArray.length) {
// 将rightArray剩下的元素全部复制到array对应位置中
array = branchArray2Array(array, startIndex + i + 1, rightArray, n);
break;
}
} else {
array[startIndex + i] = rightArray[n++];
if (n == rightArray.length) {
// 将leftArray剩下的元素全部复制到array对应位置中
array = branchArray2Array(array, startIndex + i + 1, leftArray, m);
break;
}
}
// 不用考虑两个Integer.MAX_VALUE,因为最后两个数组分别剩下的元素必然是这两个哨兵元素
}
return array;
} private static int[] createNonSentinelBranchArray(int[] array, int startIndex, int endIndex) {
int length = endIndex - startIndex + 1;
int[] branchArray = new int[length];
for (int i = 0; i < length; i++) {
branchArray[i] = array[startIndex + i];
}
return branchArray;
} private static int[] branchArray2Array(int[] array, int targetIndex, int[] branchArray, int startIndex) {
while (startIndex < branchArray.length) {
array[targetIndex++] = branchArray[startIndex++];
}
return array;
} // 由于一些情况(如内存空间不足),数据可以直接保存到硬盘中。而不是保存在内存的数组中
private static void merge2Disk(int[] array, int startIndex, int middleIndex, int endIndex){
int[] sentinelLeftArray = createSentinelArray(array, startIndex, middleIndex);
int[] sentinelRightArray = createSentinelArray(array, middleIndex + 1, endIndex); for (int i = 0, m = 0, n = 0; i < endIndex - startIndex + 1; i++) {
if (sentinelLeftArray[m] < sentinelRightArray[n]) {
Disk.store(sentinelLeftArray[m++]);
} else {
Disk.store(sentinelRightArray[n++]);
}
// 不用考虑两个Integer.MAX_VALUE,因为最后两个数组分别剩下的元素必然是这两个哨兵元素
}
} // test_creatreSentinelArray
public static void main(String[] args) {
int[] testArray = new int[] {3, 5, 7, 2, 4, 1, 5, 0};
System.out.println(Arrays.toString(createSentinelArray(testArray, 0 , 2)));
}
}

补充:上述代码涉及的Disk类

之所以在归并排序中增加这个硬盘操作,是因为我做这道题想起来很久之前遇到的一道面试题。就是问如何用1G的空间,去排序8G的数据。答案就是采用归并排序(当时原理说出来了,但是白板没写好)。


package tech.jarry.learning.test.algorithms.mergesort; import java.util.ArrayList;
import java.util.Iterator;
import java.util.List; /**
* 模仿真实硬盘,进行数据的存储与打印数据
*/
public class Disk { private static List<Integer> diskIntegerInstance = new ArrayList<>(); public static void store(int element) {
diskIntegerInstance.add(element);
} public static void printAll() {
Iterator<Integer> integerIterator = diskIntegerInstance.iterator();
while (integerIterator.hasNext()) {
System.out.println(integerIterator.next());
}
} }

算法测试


package tech.jarry.learning.test.algorithms.mergesort; import java.util.Arrays; public class MergeSortTest { public static void main(String[] args) {
int[] testArray = new int[] {3, 5, 7, 2, 4, 1, 5, 0, 9, 18 ,12};
// 3, 5, 7, 2, 4, 1, 5, 0, 9, 18 ,12
// correct result: [0, 1, 2, 3, 4, 5, 5, 7, 9, 12, 18]
int[] resultArray = MergeSort.mergeSort(testArray);
System.out.println(Arrays.toString(resultArray));
}
}

结果输出

[0, 1, 2, 3, 4, 5, 5, 7, 9, 12, 18]

确定两数之和为固定值

这道题在leetcode中是存在的,之前的博客也有对应的解析。甚至leetcode还有求三数之和为确定值的题目。

算法实现


package tech.jarry.learning.ch2.algorithms.twosum; import tech.jarry.learning.ch2.algorithms.mergesort.MergeSort; public class TwoSum { // 题目中只要求实现确定是否存在,而无需返回对应index。否则,需要注意剔除相同index的问题,并修改binarySearch的返回值
public static boolean twoSum(int[] array, int target) {
array = MergeSort.mergeSort(array); for (int i = 0; i < array.length; i++) {
int branchTarget = target - array[i]; // 二分查找的时间复杂度为lgn
if (binarySearch(array, branchTarget)) {
return true;
}
}
return false;
} private static boolean binarySearch(int[] array, int target) {
return binarySearch(array, target, 0, array.length - 1);
} private static boolean binarySearch(int[] array, int target, int startIndex, int endIndex) {
if (endIndex > startIndex) {
int middleIndex = (endIndex + startIndex) / 2;
if (target < array[middleIndex]) {
return binarySearch(array, target, startIndex, middleIndex);
} else if (target > array[middleIndex]) {
return binarySearch(array, target, middleIndex + 1, endIndex);
} else if (target == array[middleIndex]) {
return true;
}
} return false;
}
}

算法测试


package tech.jarry.learning.test.algorithms.twosum; public class TwoSumTest { public static void main(String[] args) {
int[] testArray = new int[] {3, 5, 7, 2, 4, 1, 5, 0, 9, 18 ,12};
int target = 80;
System.out.println(TwoSum.twoSum(testArray, target));
}
}

结果输出

false

由于书中的demo只要求输出存在与否,而leetcode类似的题目,则要求返回两个元素的index。感兴趣的朋友,可以看我之前写的有关leetcode求两数之和解法的博客。

总结

其实,这章算法的demo还是比较容易实现的。更多的是找找实现算法的感觉吧。

如果代码存在什么问题,或者你们存在什么疑惑,可以私信或@我。

愿与诸君共进步。

《算法导论》第二章demo代码实现(Java版)的更多相关文章

  1. 算法导论 第一章and第二章(python)

    算法导论 第一章 算法     输入--(算法)-->输出   解决的问题     识别DNA(排序,最长公共子序列,) # 确定一部分用法     互联网快速访问索引     电子商务(数值算 ...

  2. 算法<初级> - 第二章 队列、栈、哈希表相关问题

    算法 - 第二章 数据结构 题目一 用数组实现大小固定的队列和栈(一面题) 数组实现大小固定栈 /*** * size是对头索引(initSize是固定大小) 也是当前栈大小 * size=下个进队i ...

  3. 《算法》第二章部分程序 part 4

    ▶ 书中第二章部分程序,加上自己补充的代码,包括优先队列和索引优先队列 ● 优先队列 package package01; import java.util.Comparator; import ja ...

  4. 《算法》第二章部分程序 part 2

    ▶ 书中第二章部分程序,加上自己补充的代码,包括若干种归并排序,以及利用归并排序计算数组逆序数 ● 归并排序 package package01; import java.util.Comparato ...

  5. 《算法》第二章部分程序 part 1

    ▶ 书中第二章部分程序,加上自己补充的代码,包括插入排序,选择排序,Shell 排序 ● 插入排序 package package01; import java.util.Comparator; im ...

  6. 为什么我要放弃javaScript数据结构与算法(第二章)—— 数组

    第二章 数组 几乎所有的编程语言都原生支持数组类型,因为数组是最简单的内存数据结构.JavaScript里也有数组类型,虽然它的第一个版本并没有支持数组.本章将深入学习数组数据结构和它的能力. 为什么 ...

  7. MIT算法导论——第二讲.Solving Recurrence

    本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. ...

  8. 《算法》第二章部分程序 part 5

    ▶ 书中第二章部分程序,加上自己补充的代码,包括利用优先队列进行多路归并和堆排序 ● 利用优先队列进行多路归并 package package01; import edu.princeton.cs.a ...

  9. 《算法》第二章部分程序 part 3

    ▶ 书中第二章部分程序,加上自己补充的代码,包括各种优化的快排 package package01; import edu.princeton.cs.algs4.In; import edu.prin ...

随机推荐

  1. Scala实践4

    一.数组 在Scala中,用()来访问元素,数组声明的语法格式如下 : var z:Array[String] = new Array[String](3) 或 var z = new Array[S ...

  2. The command '/bin/sh -c unzip -o php-7.2.23-src.zip' returned a non-zero code: 1

    Dockerfile 内容 #centos7 nginx php redis inotify FROM centos:7 MAINTAINER INFOBIRD RUN yum -y update & ...

  3. Spring Boot2 系列教程 (四) | 集成 Swagger2 构建强大的 RESTful API 文档

    前言 快过年了,不知道你们啥时候放年假,忙不忙.反正我是挺闲的,所以有时间写 blog.今天给你们带来 SpringBoot 集成 Swagger2 的教程. 什么是 Swagger2 Swagger ...

  4. 质数的判定 Miller_Rabin

    ----------- 10^18 #include <bits/stdc++.h> #define min(a,b) ((a)<(b)?(a):(b)) #define max(a ...

  5. c语言-输出圆形

    #include<stdio.h> #define high 100//定义界面大小 #define wide 100 void Circle(int ridus) //确定坐标 {int ...

  6. 夜晚 十点 React-Native 源码 暴力畜 系列

    百度 上 给的 关于 React-Native 的 排名 前三 继续 跟

  7. 并查集——奇偶性(Parity)

    题目描述 •有一个01序列,长度<=1000000000,现在有n条信息,每条信息的形式是-a b even/odd.表示第a位到第b位元素之间的元素总和是偶数/奇数. •你的任务是对于这些给定 ...

  8. Ninja构建系统入门

    1. 介绍 开篇先介绍.先甩资料给大家看,之后再自己演示一下基本使用.Ninja 是Google的一名程序员推出的注重速度的构建工具,一般在Unix/Linux上的程序通过make/makefile来 ...

  9. CSS-14-浮动

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. 基于django的会议室预订系统

    会议室预订系统 一.目标及业务流程 期望效果: 业务流程: 用户注册 用户登录 预订会议室 退订会议室 选择日期:今日以及以后日期 二.表结构设计和生成 1.models.py(用户继承Abstrac ...