PP: Overviewing evolution patterns of egocentric networks by interactive construction of spatial layouts
Problem:
get an overall picture of how ego-networks evolve is a common challenging task.
Existing techniques: inspect the evolution patterns of ego-networks one after another.
Purpose:
how analysts can gain insights into the overall evolution patterns of ego-networks by interactively creating different spatial layouts.
Introduction:
1. What are ego-network and ego-network analysis?
The analysis of individuals in a network context is referred to as egocentric network analysis or ego-network analysis. An ego-network consists of a focal node, the nodes within its one-step neighbourhood and all the edges among these nodes
2. the content in a spatial layout
each dot represents a dynamic ego-network, clusters of dots indicate similar evolution patterns./ outlying dots exhibit uncommon evolution patterns.
3. interpretability and interactivity.
This technique is developed with interpretability and interactivity in mind
Related work:
1. ego-network visualization
i. Most of them focus on visualizing individual ego networks rather than revealing the overall evolution patterns;
ii. tree-ring layout.
iii. ...
2. dynamic network visualization
i. Two major approaches to analyze network evolution are animation and timeline.
- animation: Animation-based technique uses animated transition of visual elements (e.g., nodes and edges in a node-link diagram) to reveal the time dimension. An obvious drawback is that it is cognitively demanding to keep track of the changes.
- Timeline-based approaches, on the other hand, use small multiples (e.g., [6]), vertical or horizontal timeline (e.g., [24]) and circular layout (e.g., [51]) to represent the time dimension. However, as noted by Wu et al. these techniques mainly focus on tracking changes of the entire network rather than the characteristics of ego-networks.
3. techniques for creating spatial layouts for sensemaking
i.
Methodology:
- 两个要素: interpretability and interactivity. 可解释性和可交互性
- data model: 142 dynamic ego-networks for 24 months, and generated time series from these dynamic ego-networks( derived from node attributes---CEO,President,Vice President..., derived from network structure---size, density.)
- data transformation pipeline.
- time series -----> event sequences: input time series and event type, output extracted point/interval events.
- event sequences -----> feature vectors: a feature vector records the number of happened events E = {e1,e2,e3,e4...}.
- feature vectors -----> distance matrix: pairwise distance.
- distance matrix -----> spatial layout: use MDS to project distance matrix onto a spatial layout. Others: force-directed MDS/ t-SNE, slower and less scalable. Spatial layouts are often generated by dimensionality reduction techniques (e.g., PCA [28], MDS [49] and t-SNE [37])
- 评论, 由于是从ego-networks中抽取的特征作为time-series, 而又从time series中抽取events, 这一步当中虽然event记录了时间发生开始和结束,但是在step3转化为了feature vectors, 记录的是事件发生的次数,不包含时间发生顺序. 但是原文也提到,step2 and step3 can be replaced by other methods. ??为什么不直接对time series进行距离计算,这样更能发现两个dynamic ego-network之间的evolution 是否相似.
- The spatial layout reveals the evolution patterns. Each dot in spatial layouts presents a dynamic ego-network (24 ego-networks of one indivisual). If two ego-networks share similar evolution patterns, they will have similar number of events of the same type, thereby pulling them closer together in the spatial layout.
User interface:
- conducted a formative evaluation of the initial prototype with two experts. Interviewing two experts for about an hour.
Supplementary knowledge:
- Enron email network dataset: 142 employees. Each individual has a dynamic ego-network. An ego-network snapshot depicts the email communication of an employee with other employees in a given month. The data set spans 24 months. So there are 142 * 24 ego-networks/ 142 dynamic ego-networks, each having 24 snapshots.
PP: Overviewing evolution patterns of egocentric networks by interactive construction of spatial layouts的更多相关文章
- Classifying plankton with deep neural networks
Classifying plankton with deep neural networks The National Data Science Bowl, a data science compet ...
- 深度学习方法(十三):卷积神经网络结构变化——可变形卷积网络deformable convolutional networks
上一篇我们介绍了:深度学习方法(十二):卷积神经网络结构变化--Spatial Transformer Networks,STN创造性地在CNN结构中装入了一个可学习的仿射变换,目的是增加CNN的旋转 ...
- 【注意力机制】Attention Augmented Convolutional Networks
注意力机制之Attention Augmented Convolutional Networks 原始链接:https://www.yuque.com/lart/papers/aaconv 核心内容 ...
- CVPR 2017 Paper list
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View ...
- 关于LDA的文章
转:http://www.zhizhihu.com/html/y2011/3228.html l Theory n Introduction u Unsupervised learning by ...
- KDD2015,Accepted Papers
Accepted Papers by Session Research Session RT01: Social and Graphs 1Tuesday 10:20 am–12:00 pm | Lev ...
- Java中实现SAX解析xml文件到MySQL数据库
大致步骤: 1.Java bean 2.DBHelper.java 3.重写DefaultHandler中的方法:MyHander.java 4.循环写数据库:SAXParserDemo.java ① ...
- 转 SSD论文解读
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u010167269/article/det ...
- Computer Vision_33_SIFT:Speeded-Up Robust Features (SURF)——2006
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
随机推荐
- Django如何连接mysql
1.设置django的mysql驱动为pymysql 因为django默认的是使用MySqlDb连接mysql数据库,但是由于该模块不支持python3.4以上版本,所以使用pymysql模块 在项目 ...
- 面试题32 - III. 从上到下打印二叉树 III
面试题32 - III. 从上到下打印二叉树 III 请实现一个函数按照之字形顺序打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右到左的顺序打印,第三行再按照从左到右的顺序打印,其他行以此类 ...
- CF #618 div.2
序 闲来无事,打场CF,本人蒟蒻,考场A了前三道,第四有解答 正文 T1 Non-zero 是道水题.... 给你一个序列a.要求你输出最少的操作次数使这个序列的累和与累乘都不为0: 一次操作指给\( ...
- MyBatis的基本注解
MyBatis的基本注解: 增删改查 @Select("select * from teacher") public List<Teacher> selAll(); / ...
- Java-公约公倍
题目: 如果两个数很大,怎样求最大公约数,最小公倍数?如果是n个数呢?比如1000个数的最小公倍数 分析:求a和b的最大公约数——辗转相除法(又叫欧几里得定理).即找到一个数,能对a,b都除尽.对于这 ...
- javascript当中onload用法
7)onload onload就是等页面加载完后才执行. 例 3.7.1 <HEAD> <meta http-equiv="content-type" conte ...
- 七月在线spark教程
链接:https://pan.baidu.com/s/1Ir5GMuDqJQBmSavHC-hDgQ 提取码:qd2e
- Java中的isEmpty方法、null以及""的区别
本文转自:https://blog.csdn.net/peng86788/article/details/80885814 这是一个比较容易混淆的概念,为了弄清楚这个问题,最好的方法当然是写程序来验证 ...
- C语言 switch
C语言 switch 功能:获取到值对应成立不同表达式. 优点:switch 语句执行效率比if语句要快,switch是通过开关选择的方式执行,而if语句是从开头判断到结尾. 缺点:不能判断多个区间. ...
- PP: Meta-learning framework with applications to zero-shot time-series forecasting
From: Yoshua Bengio Problem: time series forecasting. Supplementary knowledge: 1. what is meta-learn ...