题意:有n(n≤30)种立方体,每种有无穷多个。要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽。

评测地址:http://acm.hust.edu.cn/vjudge/problem/19214

AC代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 50010
inline const int read(){
register int x=,f=;
register char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct node{
int x,y,z;
bool operator < (const node &t) const{
return x*y<t.x*t.y;
}
}e[N];
int ca,n,cnt,f[N];
void dp(){
int ans=;
for(int i=;i<=cnt;i++){
f[i]=e[i].z;
for(int j=;j<i;j++){
if(e[j].x<e[i].x&&e[j].y<e[i].y){
f[i]=max(f[i],f[j]+e[i].z);
}
}
ans=max(ans,f[i]);
}
printf("Case %d: maximum height = %d\n", ++ca, ans);
}
int main(){
for(;;){
n=read();
if(!n) break;
cnt=;
memset(e,,sizeof e);
memset(f,,sizeof f);
for(int i=,x,y,z;i<=n;i++){
x=read();y=read();z=read();
e[++cnt]=(node){x,y,z};
e[++cnt]=(node){y,x,z};
e[++cnt]=(node){x,z,y};
e[++cnt]=(node){z,x,y};
e[++cnt]=(node){z,y,x};
e[++cnt]=(node){y,z,x};
}
sort(e+,e+cnt+);
dp();
}
return ;
}

UVA 437 The Tower of Babylon巴比伦塔的更多相关文章

  1. UVa 437 The Tower of Babylon(经典动态规划)

    传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...

  2. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  3. UVa 437 The Tower of Babylon(DP 最长条件子序列)

     题意  给你n种长方体  每种都有无穷个  当一个长方体的长和宽都小于还有一个时  这个长方体能够放在还有一个上面  要求输出这样累积起来的最大高度 由于每一个长方体都有3种放法  比較不好控制 ...

  4. UVA - 437 The Tower of Babylon(dp-最长递增子序列)

    每一个长方形都有六种放置形态,其实可以是三种,但是判断有点麻烦直接用六种了,然后按照底面积给这些形态排序,排序后就完全变成了LIS的问题.代码如下: #include<iostream> ...

  5. UVA 437 The Tower of Babylon(DAG上的动态规划)

    题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...

  6. UVA 427 The Tower of Babylon 巴比伦塔(dp)

    据说是DAG的dp,可用spfa来做,松弛操作改成变长.注意状态的表示. 影响决策的只有顶部的尺寸,因为尺寸可能很大,所以用立方体的编号和高的编号来表示,然后向尺寸更小的转移就行了. #include ...

  7. DP(DAG) UVA 437 The Tower of Babylon

    题目传送门 题意:给出一些砖头的长宽高,砖头能叠在另一块上要求它的长宽都小于下面的转头的长宽,问叠起来最高能有多高 分析:设一个砖头的长宽高为x, y, z,那么想当于多了x, z, y 和y, x, ...

  8. UVA 437 "The Tower of Babylon" (DAG上的动态规划)

    传送门 题意 有 n 种立方体,每种都有无穷多个. 要求选一些立方体摞成一根尽量高的柱子(在摞的时候可以自行选择哪一条边作为高): 立方体 a 可以放在立方体 b 上方的前提条件是立方体 a 的底面长 ...

  9. UVa437 The Tower of Babylon(巴比伦塔)

    题目 有n(n<=30)种立方体,每种有无穷多个,摞成尽量高的柱子,要求上面的立方体要严格小于下面的立方体. 原题链接 分析 顶面的大小会影响后续的决策,但不能直接用d[a][b]来表示,因为可 ...

随机推荐

  1. 《C/C++工程师综合练习卷》

    前言 前天拿这个<C/C++工程师综合练习卷>练习了一下,现将错题以及精题分析总结. 错题分析与总结 2 . 下面的程序可以从1-.n中随机等概率的输出m个不重复的数.这里我们假设n远大于 ...

  2. STM32定时器的两个小难点

    TIM1 TIM8 挂在APB2上 一般为72M 也即APB2分频系数为1其余TIMER可以认为都挂在APB1上,一般为36M 也即APB1分频系数为2 或者更大 至少为2 APB1不能超过36M定时 ...

  3. js总结(一):javascript的类型:基本类型、对象和数组

    javascript 类型分为2种,一个是原始值,另一个是复杂值(对象). 一.原始值 5个原始值是:数字,字符,布尔,null,undefined. 9个原生的对象构造函数:Number Strin ...

  4. XV6锁

    锁 xv6 运行在多处理器上,即计算机上有多个单独执行代码的 CPU.这些 CPU 操作同一片地址空间并分享其中的数据结构:xv6 必须建立一种合作机制防止它们互相干扰.即使是在单个处理器上,xv6 ...

  5. [codevs1050]棋盘染色 2

    [codevs1050]棋盘染色 2 试题描述 有一个5*N的棋盘,棋盘中的一些格子已经被染成了黑色,你的任务是对最少的格子染色,使得所有的黑色能连成一块. 输入 第一行一个整数N(<=100) ...

  6. [POJ2446] Chessboard(二分图最大匹配-匈牙利算法)

    传送门 把所有非障碍的相邻格子彼此连一条边,然后求二分图最大匹配,看 tot * 2 + k 是否等于 n * m 即可. 但是连边不能重复,比如 a 格子 和 b 格子 相邻,不能 a 连 b ,b ...

  7. hdu 1043 A*

    http://www.cnblogs.com/183zyz/archive/2011/08/12/2135827.html #include<stdio.h> #define N 3630 ...

  8. hdu4135 Co-prime【容斥原理】

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  9. 2016 Multi-University Training Contest 9 solutions BY 金策工业综合大学

    A Poor King Tag: Reversed BFS Preprocessing is needed to calculate answers for all positions (states ...

  10. 为什么zookeeper的节点配置的个数必须是奇数个?

    zookeeper有这样一个特性:集群中只要有过半的机器是正常工作的,那么整个集群对外就是可用的.也就是说如果有2个zookeeper,那么只要有1个死了zookeeper就不能用了,因为1没有过半, ...