P3390矩阵快速幂
题目背景
矩阵快速幂
题目描述
给定n*n的矩阵A,求A^k
输入输出格式
输入格式:
第一行,n,k
第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素
输出格式:
输出A^k
共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7
输入输出样例
2 1
1 1
1 1
1 1
1 1
说明
n<=100, k<=10^12, |矩阵元素|<=1000
//上板子!
#include<iostream>
#include<cstdio>
#define ll long long
#define mod 1000000007 using namespace std;
ll n,m;
struct node
{
ll a[][];
}ans,base; ll init()
{
ll x=,f=;char c=getchar();
while(c>''||c<''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} node mul(node a,node b)
{
node res;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
res.a[i][j]=;
for(int k=;k<=n;k++)
res.a[i][j]=(res.a[i][j]+a.a[i][k]*b.a[k][j])%mod;
}
return res;
} node qw(node a,ll k)
{
node res=a;
while(k)
{
if(k&) a=mul(a,res);
res=mul(res,res);k>>=;
}
return a;
} int main()
{
n=init();m=init();
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
ans.a[i][j]=init();
}
m--;
ans=qw(ans,m);
for (int i=;i<=n;i++)
{
for (int j=;j<n;j++) printf("%d ",ans.a[i][j]);
printf("%d\n",ans.a[i][n]);
}
}
算法:矩阵快速幂
P3390矩阵快速幂的更多相关文章
- 【luogu P3390 矩阵快速幂】 模板
题目链接:https://www.luogu.org/problemnew/show/P3390 首先要明白矩阵乘法是什么 对于矩阵A m*p 与 B p*n 的矩阵 得到C m*n 的矩阵 矩阵 ...
- Luogu P3390 【模板】矩阵快速幂&&P1939 【模板】矩阵加速(数列)
补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一 ...
- 模板【洛谷P3390】 【模板】矩阵快速幂
P3390 [模板]矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 矩阵A的大小为n×m,B的大小为n×k,设C=A×B 则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i, ...
- P3390 【模板】矩阵快速幂
题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...
- Luogu P3390 【模板】矩阵快速幂
题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...
- 【洛谷P3390】矩阵快速幂
矩阵快速幂 题目描述 矩阵乘法: A[n*m]*B[m*k]=C[n*k]; C[i][j]=sum(A[i][1~n]+B[1~n][j]) 为了便于赋值和定义,我们定义一个结构体储存矩阵: str ...
- 矩阵快速幂模板(pascal)
洛谷P3390 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格 ...
- 快速幂&&矩阵快速幂
快速幂 题目链接:https://www.luogu.org/problemnew/show/P1226 快速幂用了二分的思想,即将\(a^{b}\)的指数b不断分解成二进制的形式,然后相乘累加起来, ...
- luoguP3390(矩阵快速幂模板题)
链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...
随机推荐
- NOIP2000方格取数(洛谷,动态规划递推)
先上题目: P1004 方格取数 下面上ac代码: ///如果先走第一个再走第二个不可控因素太多 #include<bits/stdc++.h> #define ll long long ...
- 03匿名内部类、eclipse快捷键、String相关知识
03匿名内部类.eclipse快捷键.String相关知识-2018.7.11 1.匿名内部类(只针对重写一个方法时候使用,不能向下转型,因为没有子类类名) new Inter(){ public v ...
- TestNG参数化测试
参数化有两种方法: 第一种:在xml文件中声明 第二种:用@DataProvider注解 先介绍第一种方法: ParameterTest类:用@Parameters({"name" ...
- git 安装 使用
git 安装--------------------------------------yum install git -y git 下载项目----------------------------- ...
- Android 找不到资源的问题
偶尔会遇到R.layout.***或R.id.***找不到资源的问题,明明在文件夹中有啊,那为什么嘞? 结合我自己遇到的情况和网上的资料,总结出以下几点可能的原因: 导入了android.R.这个是最 ...
- Spring整合Junit框架
一.开发环境 eclipse版本:4.6.1 maven版本:3.3.3 junit版本:4.12 spring版本:4.1.5.RELEASE JDK版本:1.8.0_111 二.项目结构 图 三. ...
- 二、第一个ECharts图表
<!DOCTYPE html> <head> <meta charset="utf-8"> <title>ECharts</t ...
- noip模拟赛 三角形
[问题描述] 平面上有N条直线,用方程Aix + Biy +Ci =0表示.这些直线没有三线共点的.现在要你计算出用这些直线可以构造出多少三角形? 输入: 第1行:一个整数N(1 ≤ N≤ 30000 ...
- Choose and divide
The binomial coefficient C(m, n) is defined as C(m, n) = m! (m − n)! n! Given four natural numbers p ...
- [bzoj1613][Usaco2008 Jan]Running贝茜的晨练计划_动态规划
Running贝茜的晨练计划 bzoj-1613 Usaco-2008 Jan 题目大意:题目链接(U组题题意真的是没法概括qwq....). 注释:略. 想法:一眼dp题. 状态:dp[i][j]表 ...