P4727 [HNOI2009]图的同构记数
如果我们把选出子图看成选出边,进而看成对边黑白染色,那么就是上一题的弱化版了,直接复制过来然后令\(m=2\)即可
不过直接交上去会T,于是加了几发大力优化
不知为何华丽的被小号抢了rank2
//minamoto
#include<bits/stdc++.h>
#define fp(i,a,b) for(register int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(register int i=a,I=b-1;i>I;--i)
using namespace std;
const int N=105,P=997;
int ans,n,m,fac[N],inv[N],rec[N],Gcd[N][N];
int GCD(int i,int j){
if(Gcd[i][j])return Gcd[i][j];
if(!i)return Gcd[i][j]=j;if(!j)return Gcd[i][j]=i;
return Gcd[i][j]=GCD(j,i%j);
}
int ksm(int x,int y){
int res=1;
for(;y;y>>=1,x=x*x%P)if(y&1)res=res*x%P;
return res;
}
void calc(int x){
int sum=0,mul=1,now=1;
fp(i,1,x)sum+=rec[i]/2;
fp(i,1,x)fp(j,i+1,x)sum+=Gcd[rec[i]][rec[j]];
fp(i,1,x)(mul*=rec[i])%=P;
fp(i,2,x){
if(rec[i]!=rec[i-1])(mul*=fac[now])%=P,now=0;
++now;
}(mul*=fac[now])%=P,mul=fac[n]*ksm(mul,P-2)%P;
(ans+=mul*ksm(m,sum)%P)%=P;
}
void dfs(int k,int x,int s){
if(!x)calc(k-1);if(x<s)return;
fp(i,s,x)rec[k]=i,dfs(k+1,x-i,i);
}
void init(){
fac[0]=1;fp(i,1,n)fac[i]=fac[i-1]*i%P;
fp(i,1,n)Gcd[i][0]=Gcd[0][i]=i;
fp(i,1,n)fp(j,1,n)GCD(i,j);
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n),m=2,init();
dfs(1,n,1);(ans*=ksm(fac[n],P-2))%=P;
printf("%d\n",ans);return 0;
}
P4727 [HNOI2009]图的同构记数的更多相关文章
- [HNOI2009]图的同构记数
题意 在所以置换下,本质不同的\(n\)阶图个数 做法 可以假想成\(K_n\),边有黑白两色,黑边存在于原图,白边存在于补图 由于\(n\le 60\),可以手算出拆分数不大,所以我们爆搜置换群 对 ...
- Luogu P4727-- 【HNOI2009】图的同构记数
Description 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和 ...
- BZOJ 1488 Luogu P4727 [HNOI2009]图的同构 (Burnside引理、组合计数)
题目链接 (Luogu) https://www.luogu.org/problem/P4727 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.ph ...
- 【BZOJ1488】[HNOI2009]图的同构(Burside引理,Polya定理)
[BZOJ1488][HNOI2009]图的同构(Burside引理,Polya定理) 题面 BZOJ 洛谷 题解 求本质不同的方案数,很明显就是群论这套理论了. 置换一共有\(n!\)个,考虑如何对 ...
- bzoj1488 [HNOI2009]图的同构 Burnside 引理
题目传送门 bzoj1488 - [HNOI2009]图的同构 bzoj1815 - [Shoi2006]color 有色图(双倍经验) 题解 暴力 由于在做题之前已经被告知是 Burnside 引理 ...
- bzoj1488[HNOI2009]图的同构
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1488 1488: [HNOI2009]图的同构 Time Limit: 10 Sec M ...
- 记数排序 & 桶排序 & 基数排序
为什么要写这样滴一篇博客捏...因为一个新初一问了一道水题,结果就莫名其妙引起了战斗. 然后突然发现之前理解的桶排序并不是真正的桶排序,所以写一篇来区别下这三个十分相似的排序辣. 老年菜兔的觉醒!!! ...
- Python02 标准输入输出、数据类型、变量、随记数的生成、turtle模块详解
1 标准输出 python3利用 print() 来实现标准输出 def print(self, *args, sep=' ', end='\n', file=None): # known speci ...
- 记数问题(0)<P2013_1>
记数问题 (count.cpp/c/pas) [问题描述] 试计算在区间1到n的所有整数中,数字x(0≤x≤9)共出现了多少次?例如,在1到11中,即在1.2.3.4.5.6.7.8.9.10.11 ...
随机推荐
- map.keySet()获取map全部的key值
map.keySet()获取map全部的key值 public static String getUrlWithQueryString(String url, Map<String, Str ...
- python 几种点积运算方式效率分析
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51793984 本文列举出几种pytho ...
- 算法(1):查找&排序
算法(Algorithm):一个计算过程,解决问题的方法 程序 = 数据结构+算法 时间复杂度: 当算法过程中出现循环折半的时候,复杂度式子中会出现 O(logn) 时间复杂度小结: 1. 时间复杂度 ...
- NOIP2013提高组D2T3 华容道
n<=30 * m<=30 的地图上,0表示墙壁,1表示可以放箱子的空地.q<=500次询问,每次问:当空地上唯一没有放箱子的空格子在(ex,ey)时,把位于(sx,sy)的箱子移动 ...
- 【Eclipse】eclipse中设置tomcat启动时候的JVM参数
主要通过以下的几个jvm参数来设置堆内存的: -Xmx512m 最大总堆内存,一般设置为物理内存的1/4 -Xms512m 初始总堆内存,一般将它设置的和最大堆内存一样大,这样就不需要根据当前堆使用情 ...
- hdu - 1627 Krypton Factor (dfs)
http://acm.hdu.edu.cn/showproblem.php?pid=1627 给定 n 和 L 找出第n个范围在0-L之内的字符串,字符串要求没有相邻的子串是相同的. 按照格式输出. ...
- [bzoj4131]并行博弈_博弈论
并行博弈 bzoj-4131 题目大意:题目链接. 注释:略. 想法:我们发现无论如何操作都会使得$(1,1)$发生改变. 所以单个$ACG$的胜利条件就是$(1,1)$是否为黑色. 如果为黑色那么可 ...
- Charm Bracelet-POJ3624(01背包)
http://poj.org/problem?id=3624 Charm Bracelet Time Limit: 1000MS Memory Limit: 65536K Total Submis ...
- 详解MySQL分区表
当数据库数据量涨到一定数量时,性能就成为我们不能不关注的问题,如何优化呢? 常用的方式不外乎那么几种: 1.分表,即把一个很大的表达数据分到几个表中,这样每个表数据都不多. 优点:提高并发量,减小锁的 ...
- angularJS 系列(七)
In AngularJS 1.3+, there is One-time binding built-in: The main purpose of one-time binding expressi ...