2679: [Usaco2012 Open]Balanced Cow Subsets

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 462  Solved: 197
[Submit][Status][Discuss]

Description

Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk each day (1 <= M(i) <= 100,000,000). FJ wants to streamline the process of milking his cows every day, so he installs a brand new milking machine in his barn. Unfortunately, the machine turns out to be far too sensitive: it only works properly if the cows on the left side of the barn have the exact same total milk output as the cows on the right side of the barn! Let us call a subset of cows "balanced" if it can be partitioned into two groups having equal milk output. Since only a balanced subset of cows can make the milking machine work, FJ wonders how many subsets of his N cows are balanced. Please help him compute this quantity.

给出N(1≤N≤20)个数M(i) (1 <= M(i) <= 100,000,000),在其中选若干个数,如果这几个数可以分成两个和相等的集合,那么方案数加1。问总方案数。

Input

 Line 1: The integer N. 
 Lines 2..1+N: Line i+1 contains M(i).

Output

* Line 1: The number of balanced subsets of cows.

Sample Input

4 1 2 3 4
INPUT DETAILS: There are 4 cows, with milk outputs 1, 2, 3, and 4.

Sample Output

3
OUTPUT DETAILS: There are three balanced subsets: the subset {1,2,3}, which can be partitioned into {1,2} and {3}, the subset {1,3,4}, which can be partitioned into {1,3} and {4}, and the subset {1,2,3,4} which can be partitioned into {1,4} and {2,3}.

HINT

 

Source

/*
判断能否划分为两个相等集合时用dp RE了
*/
#include<bits/stdc++.h> #define N 30
#define M 3111111
#define mod 2333333 using namespace std;
int n,m,ans,cnt,flag;
int a[N],vis[N],V[M];
int cur[N],sum[N]; inline int read()
{
int x=,f=;char c=getchar();
while(c>''||c<''){if(x=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} bool dfs2(int cur[],int k,int val,int n)
{
if(n== && cur[]!=cur[]) return false;
if(flag) return true;
if(val==sum[n]-val) {flag=;return true;}
if(k==n && !flag) return false;
for(int i=k+;i<=n;i++)
dfs2(cur,i,val+cur[i],n),dfs2(cur,i,val,n);
if(!flag)return false;
} bool judge()
{
int cnt_=,S=;
memset(cur,,sizeof cur);
memset(sum,,sizeof sum);
for(int i=;i<=n;i++) if(vis[i]) cur[++cnt_]=a[i],sum[cnt_]=sum[cnt_-]+cur[cnt_];
sort(cur+,cur+cnt_+);
for(int i=;i<=cnt_;i++) S+=S*+cur[i],S%=mod;
if(V[S]) return false;V[S]=;flag=;
if(sum[cnt_]%) return false;
if(dfs2(cur,,,cnt_)) return true;
return false; } void dfs(int lim,int k,int tot)
{
if(tot==lim)
{
if(judge()) ans++;
return;
}
if(k>n) return;
for(int i=k+;i<=n;i++)
{
if(vis[i]) continue;
vis[i]=;dfs(lim,k+,tot+);
vis[i]=;
}
} int main()
{
//freopen("ly.in","r",stdin);
n=read();
for(int i=;i<=n;i++) a[i]=read();
cnt=;
while(cnt<=n)
{
memset(vis,,sizeof vis);
dfs(cnt,,);
cnt++;
}
printf("%d\n",ans);
return ;
}

24暴搜

/*
折半搜索
枚举每个数如何选择,放入A就加,放入B就减
状压判断每个数的具体选择状态
最后双指针扫统计答案 若集合A的和 + 集合B的和为0那么就说明这两个集合构成的答案合法
*/
#include<bits/stdc++.h> #define N 22
#define ll long long using namespace std;
int n,v[N<<],maxdep,cnta,cntb;
bool vis[<<N];
ll ans;
struct node{
int state,x;
}a[<<N],b[<<N];
inline bool cmp1(node a,node b){return a.x<b.x;}
inline bool cmp2(node a,node b){return a.x>b.x;} inline int read()
{
int x=,f=;char c=getchar();
while(c>''||c<''){if(x=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} void dfs(int dep,int sum,int now,int flag)
{
if(dep==maxdep+)
{
if(!flag)
a[++cnta].x=sum,a[cnta].state=now;
else
b[++cntb].x=sum,b[cntb].state=now;
return;
}
dfs(dep+,sum,now,flag);
dfs(dep+,sum+v[dep],now | (<<(dep-)),flag);
dfs(dep+,sum-v[dep],now | (<<(dep-)),flag);
}
int main()
{
n=read();
for(int i=; i<=n; i++)v[i]=read();
maxdep=n/;dfs(,,,);
maxdep=n; dfs(n/+,,,);
sort(a+,a++cnta,cmp1);
sort(b+,b++cntb,cmp2); int l=,r=;
while(l<=cnta&&r<=cntb)
{
while(-a[l].x<b[r].x&&r<=cntb)r++;
int pos=r;
while(r<=cntb&&-a[l].x==b[r].x)
{
if(!vis[a[l].state | b[r].state])
{
vis[a[l].state | b[r].state]=;
ans++;
}r++;
}
if(l<cnta&&a[l].x==a[l+].x)r=pos;
l++;
}
printf("%lld\n",ans-);//减去空集
return ;
}

bzoj2679: [Usaco2012 Open]Balanced Cow Subsets(折半搜索)的更多相关文章

  1. BZOJ2679 : [Usaco2012 Open]Balanced Cow Subsets

    考虑折半搜索,每个数的系数只能是-1,0,1之中的一个,因此可以先通过$O(3^\frac{n}{2})$的搜索分别搜索出两边每个状态的和以及数字的选择情况. 然后将后一半的状态按照和排序,$O(2^ ...

  2. 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)

    [Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...

  3. BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针

    BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针 Description Farmer John's owns N ...

  4. 折半搜索+Hash表+状态压缩 | [Usaco2012 Open]Balanced Cow Subsets | BZOJ 2679 | Luogu SP11469

    题面:SP11469 SUBSET - Balanced Cow Subsets 题解: 对于任意一个数,它要么属于集合A,要么属于集合B,要么不选它.对应以上三种情况设置三个系数1.-1.0,于是将 ...

  5. bzoj2679:[Usaco2012 Open]Balanced Cow Subsets

    思路:折半搜索,每个数的状态只有三种:不选.选入集合A.选入集合B,然后就暴搜出其中一半,插入hash表,然后再暴搜另一半,在hash表里查找就好了. #include<iostream> ...

  6. [Usaco2012 Open]Balanced Cow Subsets

    Description Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk ...

  7. 【BZOJ】2679: [Usaco2012 Open]Balanced Cow Subsets

    [算法]折半搜索+数学计数 [题意]给定n个数(n<=20),定义一种方案为选择若干个数,这些数可以分成两个和相等的集合(不同划分方式算一种),求方案数(数字不同即方案不同). [题解] 考虑直 ...

  8. SPOJ-SUBSET Balanced Cow Subsets

    嘟嘟嘟spoj 嘟嘟嘟vjudge 嘟嘟嘟luogu 这个数据范围都能想到是折半搜索. 但具体怎么搜呢? 还得扣着方程模型来想:我们把题中的两个相等的集合分别叫做左边和右边,令序列前一半中放到左边的数 ...

  9. BZOJ.2679.Balanced Cow Subsets(meet in the middle)

    BZOJ 洛谷 \(Description\) 给定\(n\)个数\(A_i\).求它有多少个子集,满足能被划分为两个和相等的集合. \(n\leq 20,1\leq A_i\leq10^8\). \ ...

随机推荐

  1. 将cocos2dx 2.x.x从eclipse转移到Android Studio遇到的问题

    cocos2dx 2.x.x从eclipse转移到Android Studio遇到的问题 可能我用不太习惯Android Studio才会遇到这么多问题,让老手们见笑了. cocos2dx的最新版本, ...

  2. <转> 二分图多重匹配问题

    在二分图最大匹配中,每个点(不管是X方点还是Y方点)最多只能和一条匹配边相关联,然而,我们经常遇到这种问题,即二分图匹配中一个点可以和多条匹配边相关联,但有上限,或者说,Li表示点i最多可以和多少条匹 ...

  3. 7-26 Windows消息队列(25 分)(堆排序)

    7-26 Windows消息队列(25 分) 消息队列是Windows系统的基础.对于每个进程,系统维护一个消息队列.如果在进程中有特定事件发生,如点击鼠标.文字改变等,系统将把这个消息加到队列当中. ...

  4. markman & psd

    markman & psd MarkMan 设计稿标 & 测量神器 http://www.getmarkman.com/ https://www.jianshu.com/p/83af3 ...

  5. noip模拟赛 星空

    分析:非常神的一道题.迭代加深搜索+rand可以骗得20分.状压n的话只有24分,必须对问题进行一个转化. 在爆搜的过程中,可以利用差分来快速地对一个区间进行修改,把一般的差分改成异或型的差分: b[ ...

  6. Android定位(是否使用GPS进行定位)

    TencentLocationRequest request = TencentLocationRequest.create(); request.setRequestLevel(TencentLoc ...

  7. 创建Django项目(一)

    2013-07-24 23:20:58|   最近在学习Django项目的创建,主要的参考资料是:Djangobook 和 Django Project.这些日志用来记录自己的学习过程吧.       ...

  8. HDU——1498 50 years, 50 colors

    50 years, 50 colors Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  9. ios计算字符串宽高,指定字符串变色,获取URL参数集合

    #import <Foundation/Foundation.h> @interface NSString (Extension) - (CGFloat)heightWithLimitWi ...

  10. ETL增量单表同步简述_根据timestamp增量

    ETL增量单表同步简述 1. 实现需求 当原数据库的表有新增.更新.删除操作时,将改动数据同步到目标库对应的数据表. 2. 设计思路 设计总体流程图如下: 步骤简单说明: 1.设置job的执行属性,如 ...