2679: [Usaco2012 Open]Balanced Cow Subsets

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 462  Solved: 197
[Submit][Status][Discuss]

Description

Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk each day (1 <= M(i) <= 100,000,000). FJ wants to streamline the process of milking his cows every day, so he installs a brand new milking machine in his barn. Unfortunately, the machine turns out to be far too sensitive: it only works properly if the cows on the left side of the barn have the exact same total milk output as the cows on the right side of the barn! Let us call a subset of cows "balanced" if it can be partitioned into two groups having equal milk output. Since only a balanced subset of cows can make the milking machine work, FJ wonders how many subsets of his N cows are balanced. Please help him compute this quantity.

给出N(1≤N≤20)个数M(i) (1 <= M(i) <= 100,000,000),在其中选若干个数,如果这几个数可以分成两个和相等的集合,那么方案数加1。问总方案数。

Input

 Line 1: The integer N. 
 Lines 2..1+N: Line i+1 contains M(i).

Output

* Line 1: The number of balanced subsets of cows.

Sample Input

4 1 2 3 4
INPUT DETAILS: There are 4 cows, with milk outputs 1, 2, 3, and 4.

Sample Output

3
OUTPUT DETAILS: There are three balanced subsets: the subset {1,2,3}, which can be partitioned into {1,2} and {3}, the subset {1,3,4}, which can be partitioned into {1,3} and {4}, and the subset {1,2,3,4} which can be partitioned into {1,4} and {2,3}.

HINT

 

Source

/*
判断能否划分为两个相等集合时用dp RE了
*/
#include<bits/stdc++.h> #define N 30
#define M 3111111
#define mod 2333333 using namespace std;
int n,m,ans,cnt,flag;
int a[N],vis[N],V[M];
int cur[N],sum[N]; inline int read()
{
int x=,f=;char c=getchar();
while(c>''||c<''){if(x=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} bool dfs2(int cur[],int k,int val,int n)
{
if(n== && cur[]!=cur[]) return false;
if(flag) return true;
if(val==sum[n]-val) {flag=;return true;}
if(k==n && !flag) return false;
for(int i=k+;i<=n;i++)
dfs2(cur,i,val+cur[i],n),dfs2(cur,i,val,n);
if(!flag)return false;
} bool judge()
{
int cnt_=,S=;
memset(cur,,sizeof cur);
memset(sum,,sizeof sum);
for(int i=;i<=n;i++) if(vis[i]) cur[++cnt_]=a[i],sum[cnt_]=sum[cnt_-]+cur[cnt_];
sort(cur+,cur+cnt_+);
for(int i=;i<=cnt_;i++) S+=S*+cur[i],S%=mod;
if(V[S]) return false;V[S]=;flag=;
if(sum[cnt_]%) return false;
if(dfs2(cur,,,cnt_)) return true;
return false; } void dfs(int lim,int k,int tot)
{
if(tot==lim)
{
if(judge()) ans++;
return;
}
if(k>n) return;
for(int i=k+;i<=n;i++)
{
if(vis[i]) continue;
vis[i]=;dfs(lim,k+,tot+);
vis[i]=;
}
} int main()
{
//freopen("ly.in","r",stdin);
n=read();
for(int i=;i<=n;i++) a[i]=read();
cnt=;
while(cnt<=n)
{
memset(vis,,sizeof vis);
dfs(cnt,,);
cnt++;
}
printf("%d\n",ans);
return ;
}

24暴搜

/*
折半搜索
枚举每个数如何选择,放入A就加,放入B就减
状压判断每个数的具体选择状态
最后双指针扫统计答案 若集合A的和 + 集合B的和为0那么就说明这两个集合构成的答案合法
*/
#include<bits/stdc++.h> #define N 22
#define ll long long using namespace std;
int n,v[N<<],maxdep,cnta,cntb;
bool vis[<<N];
ll ans;
struct node{
int state,x;
}a[<<N],b[<<N];
inline bool cmp1(node a,node b){return a.x<b.x;}
inline bool cmp2(node a,node b){return a.x>b.x;} inline int read()
{
int x=,f=;char c=getchar();
while(c>''||c<''){if(x=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} void dfs(int dep,int sum,int now,int flag)
{
if(dep==maxdep+)
{
if(!flag)
a[++cnta].x=sum,a[cnta].state=now;
else
b[++cntb].x=sum,b[cntb].state=now;
return;
}
dfs(dep+,sum,now,flag);
dfs(dep+,sum+v[dep],now | (<<(dep-)),flag);
dfs(dep+,sum-v[dep],now | (<<(dep-)),flag);
}
int main()
{
n=read();
for(int i=; i<=n; i++)v[i]=read();
maxdep=n/;dfs(,,,);
maxdep=n; dfs(n/+,,,);
sort(a+,a++cnta,cmp1);
sort(b+,b++cntb,cmp2); int l=,r=;
while(l<=cnta&&r<=cntb)
{
while(-a[l].x<b[r].x&&r<=cntb)r++;
int pos=r;
while(r<=cntb&&-a[l].x==b[r].x)
{
if(!vis[a[l].state | b[r].state])
{
vis[a[l].state | b[r].state]=;
ans++;
}r++;
}
if(l<cnta&&a[l].x==a[l+].x)r=pos;
l++;
}
printf("%lld\n",ans-);//减去空集
return ;
}

bzoj2679: [Usaco2012 Open]Balanced Cow Subsets(折半搜索)的更多相关文章

  1. BZOJ2679 : [Usaco2012 Open]Balanced Cow Subsets

    考虑折半搜索,每个数的系数只能是-1,0,1之中的一个,因此可以先通过$O(3^\frac{n}{2})$的搜索分别搜索出两边每个状态的和以及数字的选择情况. 然后将后一半的状态按照和排序,$O(2^ ...

  2. 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)

    [Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...

  3. BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针

    BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针 Description Farmer John's owns N ...

  4. 折半搜索+Hash表+状态压缩 | [Usaco2012 Open]Balanced Cow Subsets | BZOJ 2679 | Luogu SP11469

    题面:SP11469 SUBSET - Balanced Cow Subsets 题解: 对于任意一个数,它要么属于集合A,要么属于集合B,要么不选它.对应以上三种情况设置三个系数1.-1.0,于是将 ...

  5. bzoj2679:[Usaco2012 Open]Balanced Cow Subsets

    思路:折半搜索,每个数的状态只有三种:不选.选入集合A.选入集合B,然后就暴搜出其中一半,插入hash表,然后再暴搜另一半,在hash表里查找就好了. #include<iostream> ...

  6. [Usaco2012 Open]Balanced Cow Subsets

    Description Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk ...

  7. 【BZOJ】2679: [Usaco2012 Open]Balanced Cow Subsets

    [算法]折半搜索+数学计数 [题意]给定n个数(n<=20),定义一种方案为选择若干个数,这些数可以分成两个和相等的集合(不同划分方式算一种),求方案数(数字不同即方案不同). [题解] 考虑直 ...

  8. SPOJ-SUBSET Balanced Cow Subsets

    嘟嘟嘟spoj 嘟嘟嘟vjudge 嘟嘟嘟luogu 这个数据范围都能想到是折半搜索. 但具体怎么搜呢? 还得扣着方程模型来想:我们把题中的两个相等的集合分别叫做左边和右边,令序列前一半中放到左边的数 ...

  9. BZOJ.2679.Balanced Cow Subsets(meet in the middle)

    BZOJ 洛谷 \(Description\) 给定\(n\)个数\(A_i\).求它有多少个子集,满足能被划分为两个和相等的集合. \(n\leq 20,1\leq A_i\leq10^8\). \ ...

随机推荐

  1. jquery对JSON字符串的解析--eval函数

    jquery eval解析JSON中的注意点介绍----https://www.jb51.net/article/40842.htm

  2. [K/3Cloud] 隐藏菜单后,如何在插件间接的调用隐藏菜单的操作

    使用场景: 动态表单里面挂了个单据的序时薄,序时薄有菜单,但是把序时薄的工具栏隐藏了.新增,修改全部动态表单自己写.删除和过滤我想间接调用下隐藏的序时薄的删除和过滤按钮的操作.在插件里如何实现? 答: ...

  3. Uva - 12230 Crossing Rivers (数学期望)

    你住在村庄A,每天需要过很多条河到另一个村庄B上班,B在A的右边,所有的河都在A,B之间,幸运的是每条船上都有自由移动的自动船, 因此只要到达河左岸然后等船过来,在右岸下船,上船之后船的速度不变.现在 ...

  4. [bzoj5343][Ctsc2018]混合果汁_二分答案_主席树

    混合果汁 bzoj-5343 Ctsc-2018 题目大意:给定$n$中果汁,第$i$种果汁的美味度为$d_i$,每升价格为$p_i$,每次最多添加$l_i$升.现在要求用这$n$中果汁调配出$m$杯 ...

  5. codevs——1385 挤牛奶

    1385 挤牛奶 USACO  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 青铜 Bronze 题解  查看运行结果     题目描述 Description 三个农民每天清 ...

  6. 深度学习——练习

    对于深度学习的基础,线性回归以及逻辑回归,下面针对这两个方面做一个练习. 例子主要参考http://openclassroom.stanford.edu/MainFolder/CoursePage.p ...

  7. win7开启超级管理员账户(Administrator)

    win7开启超级管理员账户(Administrator) 不同于XP系统,Windows7系统据说出于安全的考虑,将超级管理员帐户"Administrator"在登陆界面给隐藏了, ...

  8. 002 static and default route

    r2(config)#ip route 192.168.1.0 255.255.255.0 192.168.2.1 r1(config)#ip route 192.168.3.0 255.255.25 ...

  9. [React] Build a slide deck with mdx-deck using Markdown + React

    In this lesson we'll use mdx-deck to create a slide deck using Markdown and React. We'll look at add ...

  10. react 项目实战(二)创建 用户添加 页面 及 fetch请求 json-server db.json -w -p 8000

    1.安装 路由 npm install -S react-router@3.x 2.新增页面 我们现在的应用只有一个Hello React的页面,现在需要添加一个用于添加用户的页面. 首先在/src目 ...