1076: [SCOI2008]奖励关

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 2989  Solved: 1557
[Submit][Status][Discuss]

Description

  你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,
每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。
 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(
这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi
分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过
一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可
以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你
采取最优策略,平均情况你一共能在奖励关得到多少分值?

Input

  第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。

Output

  输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

Sample Input

1 2
1 0
2 0

Sample Output

1.500000

HINT

【数据规模】

1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。

/*
看到n很小可以状压
首先第一眼可以想到f[i][sta]表示到第i轮,物品选择状态为sta的最大期望值。
但是这样有个问题,可能到第i轮无法达到sta这个状态,但是也被当做了合法往后进行转移。
所以考虑倒退,这样状态就更改为f[i][sta]表示1~i-1轮能够到达sta这个状态,i到k轮的最大期望值。
这样就可以倒退,枚举下一个物品选不选进行转移了。
注意一点
这里求的是期望值,上面求的东西覆盖了第i轮取了所有n种宝物的情况
所以在每一个状态计算完之后,把f[i][sta]除以n即为期望平均值。
*/
#include<iostream>
#include<cstdio>
#include<cstring> #define N 107 using namespace std;
int n,k,cnt,need[N];
double val[],f[N][<<]; inline int read()
{
int x=,f=;char c=getchar();
while(c>''||c<''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int main()
{
int x;
k=read();n=read();
for(int i=;i<=n;i++)
{
scanf("%lf",&val[i]);x=read();
while(x) need[i]|=(<<x-),x=read();
}
for(int i=k;i;i--)
for(int sta=;sta<=(<<n)-;sta++)
{
for (int j=; j<=n; j++)
if ((sta&need[j])==need[j])
f[i][sta]+=max(f[i+][sta],f[i+][sta|(<<(j-))]+val[j]);
else
f[i][sta]+=f[i+][sta];
f[i][sta]/=(double)n;
}
printf("%.6lf\n",f[][]);
return ;
}

bzoj1076: [SCOI2008]奖励关(期望dp+状压dp)的更多相关文章

  1. [BZOJ1076][SCOI2008]奖励关解题报告|状压DP

    你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝 ...

  2. 【SCOI2008】奖励关 题解(状压DP+期望)

    题目链接 题目大意:给定$n$个宝物,每次随机抛出一个宝物,奖励分数为$p_i$.但如果选这个宝物必须选过它的前置宝物集合.共进行$K$轮问最优策略下的期望. $n\leq 15,-10^6\leq ...

  3. 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP

    [题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...

  4. BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 3074  Solved: 1599 [Submit][Sta ...

  5. 2018.09.23 bzoj1076: [SCOI2008]奖励关(期望+状压dp)

    传送门 一道神奇的期望状压dp. 用f[i][j]f[i][j]f[i][j]表示目前在第i轮已选取物品状态为j,从现在到第k轮能得到的最大贡献. 如果我们从前向后推有可能会遇到不合法的情况. 所以我 ...

  6. [BZOJ1076][SCOI2008]奖励关 状压dp

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3070  Solved: 1595[Submit][Statu ...

  7. BZOJ1076 [SCOI2008]奖励关 概率 状态压缩动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1076 题意概括 有n个东西,k次扔出来.每次等概率扔出其中一个. 你可以拿这个东西,但是有条件,得 ...

  8. HDU5117 Fluorescent 期望 计数 状压dp 动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/HDU5117.html 题目传送门 - HDU5117 题意 $T$ 组数据. 给你 $n$ 盏灯 ,$m$ 个 ...

  9. [转]状态压缩dp(状压dp)

    状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...

随机推荐

  1. Jackson入门

    Jackson 框架,轻易转换JSON Jackson可以轻松的将Java对象转换成json对象和xml文档,同样也可以将json.xml转换成Java对象. 前面有介绍过json-lib这个框架,在 ...

  2. Mysql学习总结(43)——MySQL主从复制详细配置

    环境 操作系统:CentOS-6.6-x86_64-bin-DVD1.iso MySQL版本:mysql-5.6.26.tar.gz 主节点IP:192.168.1.205 主机名:edu-mysql ...

  3. JQuery常用的案例

    1.给导航栏添加鼠标移上去的时候变换背景颜色的方法. $(function () { $(".nav li").mouseover(function () { $(this).cs ...

  4. Automation 的 ReportFlow

    ReportFlow: // click the Grid icon and switch to grid page public void changeToGrid() // click the A ...

  5. [codeforces494B]Obsessive String

    [codeforces494B]Obsessive String 试题描述 Hamed has recently found a string t and suddenly became quite ...

  6. elasticsearch 安装ik中文分词

    https://blog.csdn.net/c5113620/article/details/79339541

  7. Spring Cloud(7):Zuul自定义过滤器和接口限流

    上文讲到了Zuul的基本使用: https://www.cnblogs.com/xuyiqing/p/10884860.html 自定义Zuul过滤器: package org.dreamtech.a ...

  8. Office高级威胁漏洞在野利用分析

    高级威胁漏洞背景 在高级威胁攻击中,黑客远程投递入侵客户端最喜欢的漏洞是office文档漏洞,就在刚刚结束不久的黑帽子大会上,最佳客户端安全漏洞奖颁给了CVE-2017-0199漏洞,这个漏洞是时下o ...

  9. php文件上传判断类型

    上传文件对象在$_FILES['Filedata']对象中,临时路径是tmp_name,判断是上传文件是否为真实图片方法很多,我用的是这个: if( !@getimagesize( $_FILES[' ...

  10. 【SSO】--单点登录之过滤器(filter)

    在单点登录的探索中.用到一个知识点:过滤器(filter).常见的几种验证:Authorization filters,验证用户是否有权限訪问页面:Action Filter,验证用户登录的时候是否用 ...