一.读前说明

1.论文"Densely Connected Convolutional Networks"是现在为止效果最好的CNN架构,比Resnet还好,有必要学习一下它为什么效果这么好.

2.代码地址:https://github.com/liuzhuang13/DenseNet

3.这篇论文主要参考了Highway Networks,Residual Networks (ResNets)和GoogLeNet,所以在读本篇论文之前,有必要读一下这几篇论文,另外还可以看一下Very Deep Learning with Highway Networks

4.参考文献 :ResNet && DenseNet(原理篇)DenseNet模型

二.阅读笔记 

Abstract

最近的一些论文表明,如果卷积神经网络的各层到输入层和输出层的连接更短,那么该网络就大体上可以设计得更深、更准确、训练得更有效。本文基于此提出了“稠密卷积网络(DensNet),该网络每一层均以前馈的形式与其他任一层连接。因此,传统卷积网络有L层就只有L个连接,而DenseNet的任一层不仅与相邻层有连接,而且与它的随后的所有层都有直接连接,所以该网络有L(L+1)/2个直接连接。任意一层的输入都是其前面所有层的特征图,而该层自己的特征图是其随后所有层的输入。DenseNet有以下几个令人激动的优点:1.减轻了梯度消失问题;2.强化了特征传播;3.大幅度减少了参数数量。该网络结构在4个高竞争性的目标识别基准数据集上进行了评估,包括:CIFAR-10,CIFAR-100,SVHN,ImageNet。DenseNet在这些数据集上大部分都获得了巨大的提高,达到目前为止最高的识别准确率。

1.Introduction

在视觉识别中,CNN是一种强大的机器学习方法。尽管CNN在20年以前就被提出来,但是只是在最近几年,计算机硬件和网络结构的提高才使得真正的深层CNN的训练变成可能。最开始的LeNet5包含5层,VGG包含19层,只有去年的Highway Networks和ResNets才超过了100层这个关卡。

三.阅读感想

翻译了一半,居然感觉完全不用翻译,真接看英文原文也能看懂,嗯对,这篇文章写得通俗易懂,根本不用像看那些什么hiton、begio、yanlecun之类大牛写的文章一样,直接一遍看过去,看得似懂非懂的。看这篇论文看完之后,感觉像吃了蜂蜜一样,看了还想看,连连最后实验结果分析和discuss也写得非常好,特别是discuss中那个图,该文创意非常棒,并且简单,最主要的是该文创意来源就是我最喜欢的那种,就是总结以前很多文章中效果好的原因,找出它们的共性,然后强化这个共性,从而得到更好的结果。

四.DenseNet结构

.在CIFAR-10上用训练时的结构DenseNet-BC:

如果depth=40, growth_rate=12, bottleneck=True, reduction=0.5=1-compression,则每个denseblock里面的层数n_layers=((40-4)/3)//2=6.其中//2表示除以2后向下取整。
注:conv表示正常的2D卷积,CONV表示BN-ReLU-conv
结构如下:
input:(32,32,3)
conv(24,3,3), % 其中conv(24,3,3)=conv(filters=2*growth_rate=24,kernel_size=3,3) #第1个dense block
CONV(48,1,1)-CONV(12,3,3)-merge(36)- % 其中CONV(48,1,1)=CONV(filters=inter_channel = nb_filter*4=48,1,1),merge后nb_filter=24+12=36
CONV(48,1,1)-CONV(12,3,3)-merge(48)- % 同上,merge后nb_filter=36+12=48
CONV(48,1,1)-CONV(12,3,3)-merge(60)-
CONV(48,1,1)-CONV(12,3,3)-merge(72)-
CONV(48,1,1)-CONV(12,3,3)-merge(84)-
CONV(48,1,1)-CONV(12,3,3)-merge(96)- % 此时nb_filter每多一层就增加growth_rate=12个,这里1个dense block里有6层,故增加72个,所以nb_falter=24+72=96 #第1个Transition Layer
CONV(48,1,1) % nb_filter=nb_filter*compression=96*0.5=48
AveragePool(2,2,(2,2)) % pool_size=2,2 strides=(2,2) #第2个dense block
CONV(48,1,1)-CONV(12,3,3)-merge(108)- % 其中CONV(48,1,1)=CONV(filters=inter_channel = nb_filter*4=48,1,1),merge后nb_filter=96+12=108
CONV(48,1,1)-CONV(12,3,3)-merge(120)-
CONV(48,1,1)-CONV(12,3,3)-merge(132)-
CONV(48,1,1)-CONV(12,3,3)-merge(144)-
CONV(48,1,1)-CONV(12,3,3)-merge(156)-
CONV(48,1,1)-CONV(12,3,3)-merge(168)- % 此时nb_filter每多一层就增加growth_rate=12个,这里1个dense block里有6层,故增加72个,所以nb_falter=96+72=168
#第2个Transition Layer
CONV(60,1,1) % nb_filter=nb_filter*compression=120*0.5=60
AveragePool(2,2,(2,2)) % pool_size=2,2 strides=(2,2)
#第3个dense block
CONV(48,1,1)-CONV(12,3,3)-merge(180)- % 其中CONV(48,1,1)=CONV(filters=inter_channel = nb_filter*4=48,1,1)
CONV(48,1,1)-CONV(12,3,3)-merge(192)-
CONV(48,1,1)-CONV(12,3,3)-merge(204)-
CONV(48,1,1)-CONV(12,3,3)-merge(216)-
CONV(48,1,1)-CONV(12,3,3)-merge(228)-
CONV(48,1,1)-CONV(12,3,3)-merge(240)- % 此时nb_filter每多一层就增加growth_rate=12个,这里1个dense block里有6层,故增加72个,所以nb_falter=168+72=240 Relu-GlobalAveragePool-softmax

为验证以上的分析,用keras==1.2.0版本验证结果如下:

 Model created
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_1 (InputLayer) (None, , , )
____________________________________________________________________________________________________
initial_conv2D (Convolution2D) (None, , , ) input_1[][]
____________________________________________________________________________________________________
batchnormalization_1 (BatchNorma (None, , , ) initial_conv2D[][]
____________________________________________________________________________________________________
activation_1 (Activation) (None, , , ) batchnormalization_1[][]
____________________________________________________________________________________________________
convolution2d_1 (Convolution2D) (None, , , ) activation_1[][]
____________________________________________________________________________________________________
batchnormalization_2 (BatchNorma (None, , , ) convolution2d_1[][]
____________________________________________________________________________________________________
activation_2 (Activation) (None, , , ) batchnormalization_2[][]
____________________________________________________________________________________________________
convolution2d_2 (Convolution2D) (None, , , ) activation_2[][]
____________________________________________________________________________________________________
merge_1 (Merge) (None, , , ) initial_conv2D[][]
convolution2d_2[][]
____________________________________________________________________________________________________
batchnormalization_3 (BatchNorma (None, , , ) merge_1[][]
____________________________________________________________________________________________________
activation_3 (Activation) (None, , , ) batchnormalization_3[][]
____________________________________________________________________________________________________
convolution2d_3 (Convolution2D) (None, , , ) activation_3[][]
____________________________________________________________________________________________________
batchnormalization_4 (BatchNorma (None, , , ) convolution2d_3[][]
____________________________________________________________________________________________________
activation_4 (Activation) (None, , , ) batchnormalization_4[][]
____________________________________________________________________________________________________
convolution2d_4 (Convolution2D) (None, , , ) activation_4[][]
____________________________________________________________________________________________________
merge_2 (Merge) (None, , , ) initial_conv2D[][]
convolution2d_2[][]
convolution2d_4[][]
____________________________________________________________________________________________________
batchnormalization_5 (BatchNorma (None, , , ) merge_2[][]
____________________________________________________________________________________________________
activation_5 (Activation) (None, , , ) batchnormalization_5[][]
____________________________________________________________________________________________________
convolution2d_5 (Convolution2D) (None, , , ) activation_5[][]
____________________________________________________________________________________________________
batchnormalization_6 (BatchNorma (None, , , ) convolution2d_5[][]
____________________________________________________________________________________________________
activation_6 (Activation) (None, , , ) batchnormalization_6[][]
____________________________________________________________________________________________________
convolution2d_6 (Convolution2D) (None, , , ) activation_6[][]
____________________________________________________________________________________________________
merge_3 (Merge) (None, , , ) initial_conv2D[][]
convolution2d_2[][]
convolution2d_4[][]
convolution2d_6[][]
____________________________________________________________________________________________________
batchnormalization_7 (BatchNorma (None, , , ) merge_3[][]
____________________________________________________________________________________________________
activation_7 (Activation) (None, , , ) batchnormalization_7[][]
____________________________________________________________________________________________________
convolution2d_7 (Convolution2D) (None, , , ) activation_7[][]
____________________________________________________________________________________________________
batchnormalization_8 (BatchNorma (None, , , ) convolution2d_7[][]
____________________________________________________________________________________________________
activation_8 (Activation) (None, , , ) batchnormalization_8[][]
____________________________________________________________________________________________________
convolution2d_8 (Convolution2D) (None, , , ) activation_8[][]
____________________________________________________________________________________________________
merge_4 (Merge) (None, , , ) initial_conv2D[][]
convolution2d_2[][]
convolution2d_4[][]
convolution2d_6[][]
convolution2d_8[][]
____________________________________________________________________________________________________
batchnormalization_9 (BatchNorma (None, , , ) merge_4[][]
____________________________________________________________________________________________________
activation_9 (Activation) (None, , , ) batchnormalization_9[][]
____________________________________________________________________________________________________
convolution2d_9 (Convolution2D) (None, , , ) activation_9[][]
____________________________________________________________________________________________________
batchnormalization_10 (BatchNorm (None, , , ) convolution2d_9[][]
____________________________________________________________________________________________________
activation_10 (Activation) (None, , , ) batchnormalization_10[][]
____________________________________________________________________________________________________
convolution2d_10 (Convolution2D) (None, , , ) activation_10[][]
____________________________________________________________________________________________________
merge_5 (Merge) (None, , , ) initial_conv2D[][]
convolution2d_2[][]
convolution2d_4[][]
convolution2d_6[][]
convolution2d_8[][]
convolution2d_10[][]
____________________________________________________________________________________________________
batchnormalization_11 (BatchNorm (None, , , ) merge_5[][]
____________________________________________________________________________________________________
activation_11 (Activation) (None, , , ) batchnormalization_11[][]
____________________________________________________________________________________________________
convolution2d_11 (Convolution2D) (None, , , ) activation_11[][]
____________________________________________________________________________________________________
batchnormalization_12 (BatchNorm (None, , , ) convolution2d_11[][]
____________________________________________________________________________________________________
activation_12 (Activation) (None, , , ) batchnormalization_12[][]
____________________________________________________________________________________________________
convolution2d_12 (Convolution2D) (None, , , ) activation_12[][]
____________________________________________________________________________________________________
merge_6 (Merge) (None, , , ) initial_conv2D[][]
convolution2d_2[][]
convolution2d_4[][]
convolution2d_6[][]
convolution2d_8[][]
convolution2d_10[][]
convolution2d_12[][]
____________________________________________________________________________________________________
batchnormalization_13 (BatchNorm (None, , , ) merge_6[][]
____________________________________________________________________________________________________
activation_13 (Activation) (None, , , ) batchnormalization_13[][]
____________________________________________________________________________________________________
convolution2d_13 (Convolution2D) (None, , , ) activation_13[][]
____________________________________________________________________________________________________
averagepooling2d_1 (AveragePooli (None, , , ) convolution2d_13[][]
____________________________________________________________________________________________________
batchnormalization_14 (BatchNorm (None, , , ) averagepooling2d_1[][]
____________________________________________________________________________________________________
activation_14 (Activation) (None, , , ) batchnormalization_14[][]
____________________________________________________________________________________________________
convolution2d_14 (Convolution2D) (None, , , ) activation_14[][]
____________________________________________________________________________________________________
batchnormalization_15 (BatchNorm (None, , , ) convolution2d_14[][]
____________________________________________________________________________________________________
activation_15 (Activation) (None, , , ) batchnormalization_15[][]
____________________________________________________________________________________________________
convolution2d_15 (Convolution2D) (None, , , ) activation_15[][]
____________________________________________________________________________________________________
merge_7 (Merge) (None, , , ) averagepooling2d_1[][]
convolution2d_15[][]
____________________________________________________________________________________________________
batchnormalization_16 (BatchNorm (None, , , ) merge_7[][]
____________________________________________________________________________________________________
activation_16 (Activation) (None, , , ) batchnormalization_16[][]
____________________________________________________________________________________________________
convolution2d_16 (Convolution2D) (None, , , ) activation_16[][]
____________________________________________________________________________________________________
batchnormalization_17 (BatchNorm (None, , , ) convolution2d_16[][]
____________________________________________________________________________________________________
activation_17 (Activation) (None, , , ) batchnormalization_17[][]
____________________________________________________________________________________________________
convolution2d_17 (Convolution2D) (None, , , ) activation_17[][]
____________________________________________________________________________________________________
merge_8 (Merge) (None, , , ) averagepooling2d_1[][]
convolution2d_15[][]
convolution2d_17[][]
____________________________________________________________________________________________________
batchnormalization_18 (BatchNorm (None, , , ) merge_8[][]
____________________________________________________________________________________________________
activation_18 (Activation) (None, , , ) batchnormalization_18[][]
____________________________________________________________________________________________________
convolution2d_18 (Convolution2D) (None, , , ) activation_18[][]
____________________________________________________________________________________________________
batchnormalization_19 (BatchNorm (None, , , ) convolution2d_18[][]
____________________________________________________________________________________________________
activation_19 (Activation) (None, , , ) batchnormalization_19[][]
____________________________________________________________________________________________________
convolution2d_19 (Convolution2D) (None, , , ) activation_19[][]
____________________________________________________________________________________________________
merge_9 (Merge) (None, , , ) averagepooling2d_1[][]
convolution2d_15[][]
convolution2d_17[][]
convolution2d_19[][]
____________________________________________________________________________________________________
batchnormalization_20 (BatchNorm (None, , , ) merge_9[][]
____________________________________________________________________________________________________
activation_20 (Activation) (None, , , ) batchnormalization_20[][]
____________________________________________________________________________________________________
convolution2d_20 (Convolution2D) (None, , , ) activation_20[][]
____________________________________________________________________________________________________
batchnormalization_21 (BatchNorm (None, , , ) convolution2d_20[][]
____________________________________________________________________________________________________
activation_21 (Activation) (None, , , ) batchnormalization_21[][]
____________________________________________________________________________________________________
convolution2d_21 (Convolution2D) (None, , , ) activation_21[][]
____________________________________________________________________________________________________
merge_10 (Merge) (None, , , ) averagepooling2d_1[][]
convolution2d_15[][]
convolution2d_17[][]
convolution2d_19[][]
convolution2d_21[][]
____________________________________________________________________________________________________
batchnormalization_22 (BatchNorm (None, , , ) merge_10[][]
____________________________________________________________________________________________________
activation_22 (Activation) (None, , , ) batchnormalization_22[][]
____________________________________________________________________________________________________
convolution2d_22 (Convolution2D) (None, , , ) activation_22[][]
____________________________________________________________________________________________________
batchnormalization_23 (BatchNorm (None, , , ) convolution2d_22[][]
____________________________________________________________________________________________________
activation_23 (Activation) (None, , , ) batchnormalization_23[][]
____________________________________________________________________________________________________
convolution2d_23 (Convolution2D) (None, , , ) activation_23[][]
____________________________________________________________________________________________________
merge_11 (Merge) (None, , , ) averagepooling2d_1[][]
convolution2d_15[][]
convolution2d_17[][]
convolution2d_19[][]
convolution2d_21[][]
convolution2d_23[][]
____________________________________________________________________________________________________
batchnormalization_24 (BatchNorm (None, , , ) merge_11[][]
____________________________________________________________________________________________________
activation_24 (Activation) (None, , , ) batchnormalization_24[][]
____________________________________________________________________________________________________
convolution2d_24 (Convolution2D) (None, , , ) activation_24[][]
____________________________________________________________________________________________________
batchnormalization_25 (BatchNorm (None, , , ) convolution2d_24[][]
____________________________________________________________________________________________________
activation_25 (Activation) (None, , , ) batchnormalization_25[][]
____________________________________________________________________________________________________
convolution2d_25 (Convolution2D) (None, , , ) activation_25[][]
____________________________________________________________________________________________________
merge_12 (Merge) (None, , , ) averagepooling2d_1[][]
convolution2d_15[][]
convolution2d_17[][]
convolution2d_19[][]
convolution2d_21[][]
convolution2d_23[][]
convolution2d_25[][]
____________________________________________________________________________________________________
batchnormalization_26 (BatchNorm (None, , , ) merge_12[][]
____________________________________________________________________________________________________
activation_26 (Activation) (None, , , ) batchnormalization_26[][]
____________________________________________________________________________________________________
convolution2d_26 (Convolution2D) (None, , , ) activation_26[][]
____________________________________________________________________________________________________
averagepooling2d_2 (AveragePooli (None, , , ) convolution2d_26[][]
____________________________________________________________________________________________________
batchnormalization_27 (BatchNorm (None, , , ) averagepooling2d_2[][]
____________________________________________________________________________________________________
activation_27 (Activation) (None, , , ) batchnormalization_27[][]
____________________________________________________________________________________________________
convolution2d_27 (Convolution2D) (None, , , ) activation_27[][]
____________________________________________________________________________________________________
batchnormalization_28 (BatchNorm (None, , , ) convolution2d_27[][]
____________________________________________________________________________________________________
activation_28 (Activation) (None, , , ) batchnormalization_28[][]
____________________________________________________________________________________________________
convolution2d_28 (Convolution2D) (None, , , ) activation_28[][]
____________________________________________________________________________________________________
merge_13 (Merge) (None, , , ) averagepooling2d_2[][]
convolution2d_28[][]
____________________________________________________________________________________________________
batchnormalization_29 (BatchNorm (None, , , ) merge_13[][]
____________________________________________________________________________________________________
activation_29 (Activation) (None, , , ) batchnormalization_29[][]
____________________________________________________________________________________________________
convolution2d_29 (Convolution2D) (None, , , ) activation_29[][]
____________________________________________________________________________________________________
batchnormalization_30 (BatchNorm (None, , , ) convolution2d_29[][]
____________________________________________________________________________________________________
activation_30 (Activation) (None, , , ) batchnormalization_30[][]
____________________________________________________________________________________________________
convolution2d_30 (Convolution2D) (None, , , ) activation_30[][]
____________________________________________________________________________________________________
merge_14 (Merge) (None, , , ) averagepooling2d_2[][]
convolution2d_28[][]
convolution2d_30[][]
____________________________________________________________________________________________________
batchnormalization_31 (BatchNorm (None, , , ) merge_14[][]
____________________________________________________________________________________________________
activation_31 (Activation) (None, , , ) batchnormalization_31[][]
____________________________________________________________________________________________________
convolution2d_31 (Convolution2D) (None, , , ) activation_31[][]
____________________________________________________________________________________________________
batchnormalization_32 (BatchNorm (None, , , ) convolution2d_31[][]
____________________________________________________________________________________________________
activation_32 (Activation) (None, , , ) batchnormalization_32[][]
____________________________________________________________________________________________________
convolution2d_32 (Convolution2D) (None, , , ) activation_32[][]
____________________________________________________________________________________________________
merge_15 (Merge) (None, , , ) averagepooling2d_2[][]
convolution2d_28[][]
convolution2d_30[][]
convolution2d_32[][]
____________________________________________________________________________________________________
batchnormalization_33 (BatchNorm (None, , , ) merge_15[][]
____________________________________________________________________________________________________
activation_33 (Activation) (None, , , ) batchnormalization_33[][]
____________________________________________________________________________________________________
convolution2d_33 (Convolution2D) (None, , , ) activation_33[][]
____________________________________________________________________________________________________
batchnormalization_34 (BatchNorm (None, , , ) convolution2d_33[][]
____________________________________________________________________________________________________
activation_34 (Activation) (None, , , ) batchnormalization_34[][]
____________________________________________________________________________________________________
convolution2d_34 (Convolution2D) (None, , , ) activation_34[][]
____________________________________________________________________________________________________
merge_16 (Merge) (None, , , ) averagepooling2d_2[][]
convolution2d_28[][]
convolution2d_30[][]
convolution2d_32[][]
convolution2d_34[][]
____________________________________________________________________________________________________
batchnormalization_35 (BatchNorm (None, , , ) merge_16[][]
____________________________________________________________________________________________________
activation_35 (Activation) (None, , , ) batchnormalization_35[][]
____________________________________________________________________________________________________
convolution2d_35 (Convolution2D) (None, , , ) activation_35[][]
____________________________________________________________________________________________________
batchnormalization_36 (BatchNorm (None, , , ) convolution2d_35[][]
____________________________________________________________________________________________________
activation_36 (Activation) (None, , , ) batchnormalization_36[][]
____________________________________________________________________________________________________
convolution2d_36 (Convolution2D) (None, , , ) activation_36[][]
____________________________________________________________________________________________________
merge_17 (Merge) (None, , , ) averagepooling2d_2[][]
convolution2d_28[][]
convolution2d_30[][]
convolution2d_32[][]
convolution2d_34[][]
convolution2d_36[][]
____________________________________________________________________________________________________
batchnormalization_37 (BatchNorm (None, , , ) merge_17[][]
____________________________________________________________________________________________________
activation_37 (Activation) (None, , , ) batchnormalization_37[][]
____________________________________________________________________________________________________
convolution2d_37 (Convolution2D) (None, , , ) activation_37[][]
____________________________________________________________________________________________________
batchnormalization_38 (BatchNorm (None, , , ) convolution2d_37[][]
____________________________________________________________________________________________________
activation_38 (Activation) (None, , , ) batchnormalization_38[][]
____________________________________________________________________________________________________
convolution2d_38 (Convolution2D) (None, , , ) activation_38[][]
____________________________________________________________________________________________________
merge_18 (Merge) (None, , , ) averagepooling2d_2[][]
convolution2d_28[][]
convolution2d_30[][]
convolution2d_32[][]
convolution2d_34[][]
convolution2d_36[][]
convolution2d_38[][]
____________________________________________________________________________________________________
batchnormalization_39 (BatchNorm (None, , , ) merge_18[][]
____________________________________________________________________________________________________
activation_39 (Activation) (None, , , ) batchnormalization_39[][]
____________________________________________________________________________________________________
globalaveragepooling2d_1 (Global (None, ) activation_39[][]
____________________________________________________________________________________________________
dense_1 (Dense) (None, ) globalaveragepooling2d_1[][]
====================================================================================================
Total params: ,
Trainable params: ,
Non-trainable params: ,
____________________________________________________________________________________________________
Finished compiling
Building model...

五.疑问

1.运行完keras实验之后发现,居然在每个CONV(48,1,1)-CONV(12,3,3)- 后面都有一个Merge,可是在代码中我并没有发现呀,哪里来的?肯定是我看漏了,可是它是从哪来的呢?

答:原来在dense_block的定义中有这样一句话看掉了:

     for i in range(nb_layers):
x = conv_block(x, growth_rate, bottleneck, dropout_rate, weight_decay)
feature_list.append(x)
x = merge(feature_list, mode='concat', concat_axis=concat_axis)
nb_filter += growth_rate

意思就是在每个这样一个模块后,都要进行Merge,即:就是把每一层的输出都串联在一起,从而组成一个新的tensor。

2.为什么每个denseblock里面的层数n_layers=((40-4)/3)//2=6.其中//2表示除以2后向下取整?即为什么是减4?

答:因为该结构中层,除了dense block 中有很多层外,还1个初始的卷积层、2个过渡层、以及1个最后分类输出层。注意:在该论文中,讲的结构深度depth为L,它并不包括输入层在内。

所以对本论文中的深度depth或L的定义如下:

a.初始的卷积conv,算作1层;

b.每个过渡层,算作1层;

c.每个dense block中的CONV(48,1,1)-CONV(12,3,3)模块,算作2层,即:1个CONV就算作1层;

d.最后的输出模块Relu-GlobalAveragePool-softmax,算作1层。

也可这么说:深度就是卷积层的层数加上1个softmax层。

Deep Learning 33:读论文“Densely Connected Convolutional Networks”-------DenseNet 简单理解的更多相关文章

  1. 深度学习论文翻译解析(十五):Densely Connected Convolutional Networks

    论文标题:Densely Connected Convolutional Networks 论文作者:Gao Huang Zhuang Liu Laurens van der Maaten  Kili ...

  2. Densely Connected Convolutional Networks 论文阅读

    毕设终于告一段落,传统方法的视觉做得我整个人都很奔溃,终于结束,可以看些搁置很久的一些论文了,嘤嘤嘤 Densely Connected Convolutional Networks 其实很早就出来了 ...

  3. 【Network Architecture】Densely Connected Convolutional Networks 论文解析

    目录 0. Paper link 1. Overview 2. DenseNet Architecture 2.1 Analogy to ResNet 2.2 Composite function 2 ...

  4. Paper | Densely Connected Convolutional Networks

    目录 黄高老师190919在北航的报告听后感 故事背景 网络结构 Dense block DenseNet 过渡层 成长率 瓶颈层 细节 实验 发表在2017 CVPR. 摘要 Recent work ...

  5. DenseNet——Densely Connected Convolutional Networks

    1. 摘要 传统的 L 层神经网络只有 L 个连接,DenseNet 的结构则有 L(L+1)/2 个连接,每一层都和前面的所有层进行连接,所以称之为密集连接的网络. 针对每一层网络,其前面所有层的特 ...

  6. Densely Connected Convolutional Networks(緊密相連卷積網絡)

    - Dense blocks where each layer is connected to every other layer in feedforward fashion(緊密塊是指每一個層與每 ...

  7. 【文献阅读】Densely Connected Convolutional Networks-best paper-CVPR-2017

    Densely Connected Convolutional Networks,CVPR-2017-best paper之一(共两篇,另外一篇是apple关于GAN的paper),早在去年八月 De ...

  8. 论文翻译——Character-level Convolutional Networks for Text Classification

    论文地址 Abstract Open-text semantic parsers are designed to interpret any statement in natural language ...

  9. Coursera, Deep Learning 5, Sequence Models, week1 Recurrent Neural Networks

    有哪些sequence model Notation: RNN - Recurrent Neural Network 传统NN 在解决sequence input 时有什么问题? RNN就没有上面的问 ...

随机推荐

  1. SPOJ QTREE3 Query on a tree again! ——Link-Cut Tree

    [题目分析] QTREE2,一看是倍增算法,太懒了,不写了.( ̄_, ̄ ) QTREE3,树链剖分可以做,发现链上的问题LCT也很好做. 要是子树问题貌似可以DFS序. 然后就成LCT模板题了. 考前 ...

  2. py 爬取页面http://m.sohu.com 并存储

             usage()               opts,args = getopt.getopt(sys.argv[1:],                        usage( ...

  3. Ceph纠删码编码机制

    1 Ceph简述 Ceph是一种性能优越,可靠性和可扩展性良好的统一的分布式云存储系统,提供对象存储.块存储.文件存储三种存储服务.Ceph文件系统中不区分节点中心,在理论上可以实现系统规模的无限扩展 ...

  4. robotframework安装和配置【转IBM:https://www.ibm.com/developerworks/cn/opensource/os-cn-robot-framework/index.html】

    内容   概览 Robot Framework 介绍 Robot Framework 的安装和配置 RIDE 编辑器介绍 创建测试项目 简单的测试用例的编写 总结 相关主题 评论   Robot Fr ...

  5. 洛谷 [P2953] 牛的数字游戏

    SG搜索 n的范围在可以接受的范围内,SG搜索即可 #include <iostream> #include <cstdio> #include <cstring> ...

  6. 玩转css样式选择器----利用padding实现元素等比缩放

  7. POJ Blue Jeans [枚举+KMP]

    传送门 F - Blue Jeans Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  8. 531. Lonely Pixel I

    Given a picture consisting of black and white pixels, find the number of black lonely pixels. The pi ...

  9. hdu1569 方格取数 求最大点权独立集

    题意:一个方格n*m,取出一些点,要求两两不相邻,求最大和.思路:建图,相邻的点有一条边,则建立了一个二分图,求最大点权独立集(所取点两两无公共边,权值和最大),问题转化为求总权和-最小点权覆盖集(点 ...

  10. ls 不是内部或外部命令

    在C:\windows目录下新建一个文件 命名为 ls.bat 打开编辑这个文件 输入: @echo off dir 这两句保存即可.