51nod 1118 机器人走方格【dp】
M * N的方格,一个机器人从左上走到右下,只能向右或向下走。有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果。
收起
输入
第1行,2个数M,N,中间用空格隔开。(2 <= m,n <= 1000)
输出
输出走法的数量。
输入样例
2 3
输出样例
3
思路:这道题也是较简单的,由于机器人只能向下或者向右走,所以在最后一步即右下时,它有两种途径,即从它左边或者上边到达的。
另dp[i][j]表示走到(i,j)点的路径数目,可以得到递推式:dp[i][j]=dp[i-1][j]+dp[i][j-1];
另外要处理一下边界,另第一行和第一列都为1,其实不难理解,边界的路径数目都为1。
#include<cstdio>
#include <iostream>
using namespace std;
const int mod=1e9+7;
const int maxn=1005;
int dp[maxn][maxn];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=0;i<n;++i)
dp[i][0]=1;
for(int j=0;j<m;++j)
dp[0][j]=1;
for(int i=1;i<n;++i)
for(int j=1;j<m;++j)
dp[i][j]=(dp[i-1][j]+dp[i][j-1])%mod;
printf("%d\n",dp[n-1][m-1]);
return 0;
}
51nod 1118 机器人走方格【dp】的更多相关文章
- 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题
51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...
- (DP)51NOD 1118 机器人走方格
M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开.( ...
- 51nod 1118 机器人走方格
M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. 收起 输入 第1行,2个数M,N,中间用空格隔开 ...
- 51Nod 1118 机器人走方格--求逆元
(x/y) %mod =x*(y^(mod-2))%mod; 在算x,y的时候可以一直mod 来缩小 y^(mod-2)显然是个快速幂 #include <iostream> #inclu ...
- 51nod 1119 机器人走方格 V2
1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少 ...
- 51nod 1120 机器人走方格V3
1120 机器人走方格 V3 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只 ...
- 51Nod——N1118 机器人走方格
https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1118 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 ...
- 51nod 1120 机器人走方格 V3 卡特兰数 lucas定理
N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 100 ...
- 51nod 1120 机器人走方格 V3
N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走. 并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法? 由于方法数量可能很大,只需要输出Mod 1 ...
随机推荐
- Dagger2----一个最简单的Dagger2依赖的实现
Dagger2是首个使用生成代码实现完整依赖注入的框架,极大降低了使用者的编码负担.Dagger2分析全部依赖并生成代码将这些依赖组织在一起,关于很多其它的Dagger2理论介绍请移步具体解释Dagg ...
- Bootstrap popover源码分析
/* ======================================================================== * Bootstrap: popover.js ...
- HttpClient-02连接管理
2.1.持久连接 两个主机建立连接的过程是很复杂的一个过程,涉及到多个数据包的交换,并且也很耗时间.Http连接需要的三次握手开销很大,这一开销对于比较小的http消息来说更大.但是如果我们直接使用已 ...
- poj 2186(tarjan+缩点)
Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 37083 Accepted: 15104 De ...
- 利用Oracle内置分析函数进行高效统计汇总
分析函数是Oracle从8.1.6开始引入的一个新的概念,为我们分析数据提供了一种简单高效的处理方式.在分析函数出现以前,我们必须使用自联查询,子查询或者内联视图,甚至复杂的存储过程实现的语句,现 ...
- 手推FP-growth (频繁模式增长)算法------挖掘频繁项集
一.频繁项集挖掘为什么会出现FP-growth呢? 原因:这得从Apriori算法的原理说起,Apriori会产生大量候选项集(就是连接后产生的),在剪枝时,需要扫描整个数据库(就是给出的数据),通过 ...
- "git rm" 和 "rm" 的区别(转载)
转自:http://yang3wei.github.io/blog/2013/02/03/git-rm-he-rm-de-qu-bie/ 这是一个比较肤浅的问题,但对于 git 初学者来说,还是有必要 ...
- Objective-C 对象的类型与动态结合
创建: 2018/01/21 更新: 2018/01/22 标题前增加 [Objective-C] 完成: 2018/01/24 更新: 2018/01/24 加红加粗属性方法的声明 [不直接获取内部 ...
- echarts-gl 3D柱状图保存为图片,打印
echarts-gl生成的立体柱状图生成图片是平面的,但是需求是3D图并且可以打印,我们的思路是先转成图片,然后再打印,代码如下: 生成3D图 <td>图表分析</td> &l ...
- java 并发编程 Executor框架
http://blog.csdn.net/chenchaofuck1/article/details/51606224 demo package executor; import java.util. ...