[Tjoi2013]最长上升子序列

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 2213  Solved: 1119
[Submit][Status][Discuss]

Description

给定一个序列,初始为空。现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置。每插入一个数字,我们都想知道此时最长上升子序列长度是多少?

Input

第一行一个整数N,表示我们要将1到N插入序列中,接下是N个数字,第k个数字Xk,表示我们将k插入到位置Xk(0<=Xk<=k-1,1<=k<=N)

Output

N行,第i行表示i插入Xi位置后序列的最长上升子序列的长度是多少。

Sample Input

3
0 0 2

Sample Output

1
1
2

HINT

100%的数据 n<=100000

Source

题解

    这道题目因为是顺序插入,求的是最长上升子序列,所以不改变当前位置的

    最长上升序列长度。

    放一个大的数在前面不影响,在中间,不影响,在后面,当当前位置为止的话也还是不影响的。

    所以只需要模拟出最后序列即可,怎么模拟,是关键。

    我是用平衡树维护的。

    点的编号即为当前插入点。

    最后求一次LIS即可。

 #include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio> #define ls tr[p].l
#define rs tr[p].r
#define N 100007
#define inf 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if (ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,m,sz,rt,bh,top,now;
char flag[];
int f[N],v[N],ans[N];
struct Node
{
int l,r,val,siz,rnd;
}tr[N]; inline int rand()
{
static int seed=;
return seed=(int)((((seed^)+19260817ll)*19890604ll)%);
} inline void update(int p)
{
tr[p].siz=tr[ls].siz+tr[rs].siz+;
}
void lturn(int &p)
{
int t=tr[p].r;tr[p].r=tr[t].l;tr[t].l=p;
tr[t].siz=tr[p].siz;update(p);p=t;
}
void rturn(int &p)
{
int t=tr[p].l;tr[p].l=tr[t].r;tr[t].r=p;
tr[t].siz=tr[p].siz;update(p);p=t;
}
void ins(int &p,int x)
{
if (p==)
{
p=++sz;
tr[p].siz=,tr[p].rnd=rand();
return;
}
tr[p].siz++;
if (tr[ls].siz<x)
{
ins(rs,x-tr[ls].siz-);
if (tr[rs].rnd<tr[p].rnd) lturn(p);
}
else
{
ins(ls,x);
if (tr[ls].rnd<tr[p].rnd) rturn(p);
}
}
void dfs(int p)
{
if (!p) return;
dfs(ls);
v[++now]=p;
dfs(rs);
}
void solve()
{
memset(f,,sizeof(f)),f[]=-inf;
for (int i=;i<=n;i++)
{
int t=upper_bound(f,f+top+,v[i])-f;
if (f[t-]<=v[i])
{
f[t]=min(f[t],v[i]);
ans[v[i]]=t;
top=max(t,top);
}
}
}
int main()
{
n=read();
for (int i=;i<=n;i++)
{
int x=read();now=i;
ins(rt,x);
}
now=,dfs(rt);
solve();
for (int i=;i<=n;i++)
{
ans[i]=max(ans[i-],ans[i]);
printf("%d\n",ans[i]);
}
}

bzoj 3173 [Tjoi2013]最长上升子序列 (treap模拟+lis)的更多相关文章

  1. Bzoj 3173: [Tjoi2013]最长上升子序列 平衡树,Treap,二分,树的序遍历

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1183  Solved: 610[Submit][St ...

  2. BZOJ 3173: [Tjoi2013]最长上升子序列

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1524  Solved: 797[Submit][St ...

  3. BZOJ 3173: [Tjoi2013]最长上升子序列 [splay DP]

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1613  Solved: 839[Submit][St ...

  4. BZOJ 3173: [Tjoi2013]最长上升子序列( BST + LIS )

    因为是从1~n插入的, 慢插入的对之前的没有影响, 所以我们可以用平衡树维护, 弄出最后的序列然后跑LIS就OK了 O(nlogn) --------------------------------- ...

  5. BZOJ 3173 [Tjoi2013] 最长上升子序列 解题报告

    这个题感觉比较简单,但却比较容易想残.. 我不会用树状数组求这个原排列,于是我只好用线段树...毕竟 Gromah 果弱马. 我们可以直接依次求出原排列的元素,每次找到最小并且最靠右的那个元素,假设这 ...

  6. BZOJ 3173: [Tjoi2013]最长上升子序列 (线段树+BIT)

    先用线段树预处理出每个数最终的位置.然后用BIT维护最长上升子序列就行了. 用线段树O(nlogn)O(nlogn)O(nlogn)预处理就直接倒着做,每次删去对应位置的数.具体看代码 CODE #i ...

  7. bzoj 3173: [Tjoi2013]最长上升子序列【dp+线段树】

    我也不知道为什么把题看成以插入点为结尾的最长生生子序列--还WA了好几次 先把这个序列最后的样子求出来,具体就是倒着做,用线段树维护点数,最开始所有点都是1,然后线段树上二分找到当前数的位置,把这个点 ...

  8. BZOJ 3173: [Tjoi2013]最长上升子序列 Splay

    一眼切~ 重点是按照 $1$~$n$ 的顺序插入每一个数,这样的话就简单了. #include <cstdio> #include <algorithm> #define N ...

  9. 3173: [Tjoi2013]最长上升子序列

    原题:http://www.lydsy.com/JudgeOnline/problem.php?id=3173 题解:促使我写这题的动力是,为什么百度遍地是Treap,黑人问号??? 这题可以用线段树 ...

随机推荐

  1. 嵌套查询--------关联一对多关系----------collection

    参考来源:   http://www.cnblogs.com/LvLoveYuForever/p/6689577.html <resultMap id="BaseResultMap&q ...

  2. JAVA面试题最全集

      JAVA面试题最全集 2009-01-19 15:40 3458人阅读 评论(0) 收藏 举报 java面试ejbservletstringhashmap 一.Java基础知识1.Java有那些基 ...

  3. OSW

    OSWatcher 工具 下载文档 :Metalink Doc ID 301137.1 Oswatcher 主要用于监控主机资源,如CPU,内存,网络以及私有网络等.其中私有网络需要单独配置. 需要说 ...

  4. ambari集群里如何正确删除历史修改记录(图文详解)

    不多说,直接上干货! 答:这些你想删除的话得得去数据库里删除,最好别删除 .  现在默认就是使用好的配置               欢迎大家,加入我的微信公众号:大数据躺过的坑        人工智 ...

  5. 安装SNMP

    http://songknight.blog.51cto.com/2599480/655337

  6. thinkphp3.2 + soap

    服务器配置 扩展libxml2下载地址:http://xmlsoft.org/downloads.html 在windows下的php.ini文件里 找到这一行代码(如没有则自行添加) extensi ...

  7. iOS-UI控件之UITableView(四)- cell数据刷新

    TableView- 数据刷新 数据刷新 添加数据 删除数据 更改数据 全局刷新方法(最常用) [self.tableView reloadData]; // 屏幕上的所有可视的cell都会刷新一遍 ...

  8. 手动配置wamp环境(1)--apache安装与基本操作

    Apache服务器简介: Apache是世界使用排名第一的Web服务器软件.它可以运行在几乎所有广泛使用的计算机平台上,由于其跨平台和安全性被广泛使用,是最流行的Web服务器端软件之一. 安装apac ...

  9. js设计模式-发布/订阅模式

    一.前言 发布订阅模式,基于一个主题/事件通道,希望接收通知的对象(称为subscriber)通过自定义事件订阅主题,被激活事件的对象(称为publisher)通过发布主题事件的方式被通知. 就和用户 ...

  10. A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection

    作者:嫩芽33出处:http://www.cnblogs.com/nenya33/p/6817781.html 版权:本文版权归作者和博客园共有 转载:欢迎转载,但未经作者同意,必须保留此段声明:必须 ...