解方程(codevs 3732)
题目描述
已知多项式方程:
a0+a1x+a2x^2+..+anx^n=0
求这个方程在[1, m ] 内的整数解(n 和m 均为正整数)
输入输出格式
输入格式:
输入文件名为equation .in。
输入共n + 2 行。
第一行包含2 个整数n 、m ,每两个整数之间用一个空格隔开。
接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an
输出格式:
输出文件名为equation .out 。
第一行输出方程在[1, m ] 内的整数解的个数。
接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m ] 内的一个整数解。
输入输出样例
输入样例#1:
2 10
1
-2
1
输出样例#1:
1
1
输入样例#2:
2 10
2
-3
1
输出样例#2:
2
1
2
输入样例#3:
2 10
1
3
2
输出样例#3:
0
说明
30%:0<n<=2,|ai|<=100,an!=0,m<100
50%:0<n<=100,|ai|<=10^100,an!=0,m<100
70%:0<n<=100,|ai|<=10^10000,an!=0,m<10000
100%:0<n<=100,|ai|<=10^10000,an!=0,m<1000000
分析:
一看想是用高精度做,可能还会超时,就没仔细做,打的暴力枚举,50分
正解:其实不是高精度……
对于很大的数,我们可以给它取模,因为等式两边取模仍然成立。但是枚举x来判断的话会超时,所以这里用到一个技巧:如果一个数x对于这个等式成立的话,那么x+mod(模的那个数)也会成立。
需要注意的是,只用一个数模可能会不对,所以多用几个检验一下。 代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#define M 110
#define N 1000010
#define ll long long
using namespace std;
char s[N];
int n,m;
ll a[][M],p[]={,,};
bool ok[N];
bool check(int x,int num)
{
ll ans=,w=;
for(int i=;i<=n;i++)
{
ans=(ans+a[num][i]*w%p[num])%p[num];
w=(w*x)%p[num];
}
if(!(ans%p[num]))return true;
return false;
}
int main()
{
freopen("jh.in","r",stdin);
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%s",s);int l=strlen(s);
bool flag=false;
for(int j=;j<=;j++)
{
int x=;
if(s[]=='-'){flag=true;x=;}
for(int k=x;k<l;k++)
a[j][i]=(a[j][i]*%p[j]+(ll)s[k]-'')%p[j];
if(flag)a[j][i]=p[j]-a[j][i];
}
}
for(int i=;i<=p[];i++)
if(check(i,))
{
for(int j=i;j<=m;j+=p[])
if(check(j,))
ok[j]=true;
}
int tot=;
for(int i=;i<=m;i++)
if(ok[i])tot++;
printf("%d\n",tot);
for(int i=;i<=m;i++)
if(ok[i])printf("%d\n",i);
return ;
}
解方程(codevs 3732)的更多相关文章
- [NOIP2014]解方程
3732 解方程 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 输入描述 Input Descrip ...
- vijos P1915 解方程 加强版
背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...
- HDU 4793 Collision --解方程
题意: 给一个圆盘,圆心为(0,0),半径为Rm, 然后给一个圆形区域,圆心同此圆盘,半径为R(R>Rm),一枚硬币(圆形),圆心为(x,y),半径为r,一定在圆形区域外面,速度向量为(vx,v ...
- codevs3732==洛谷 解方程P2312 解方程
P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录 题目描述 已知多项式方程: a ...
- bzoj 3751: [NOIP2014]解方程 同余系枚举
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...
- Ural 1046 Geometrical Dreams(解方程+计算几何)
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046 参考博客:http://hi.baidu.com/cloudygoose/item ...
- 2017广东工业大学程序设计竞赛决赛 题解&源码(A,数学解方程,B,贪心博弈,C,递归,D,水,E,贪心,面试题,F,贪心,枚举,LCA,G,dp,记忆化搜索,H,思维题)
心得: 这比赛真的是不要不要的,pending了一下午,也不知道对错,直接做过去就是了,也没有管太多! Problem A: 两只老虎 Description 来,我们先来放松下,听听儿歌,一起“唱” ...
- 5.5Python数据处理篇之Sympy系列(五)---解方程
目录 目录 前言 (一)求解多元一次方程-solve() 1.说明: 2.源代码: 3.输出: (二)解线性方程组-linsolve() 1.说明: 2.源代码: 3.输出: (三)解非线性方程组-n ...
- python 解方程
[怪毛匠子=整理] SymPy 库 安装 sudo pip install sympy x = Symbol('x') 解方程 solve([2 * x - y - 3, 3 * x + y - 7] ...
- python 解方程 和 python 距离公式实现
解方程参考:https://zhuanlan.zhihu.com/p/24893371 缺点太慢,最后还是自己算了 距离公式参考:https://www.cnblogs.com/denny402/p/ ...
随机推荐
- iOS- NSThread/NSOperation/GCD 三种多线程技术的对比及实现 -- 转
1.iOS的三种多线程技术 1.NSThread 每个NSThread对象对应一个线程,量级较轻(真正的多线程) 2.以下两点是苹果专门开发的“并发”技术,使得程序员可以不再去关心线程的具体使用问题 ...
- sdut2355Binary Search Heap Construction
链接 捣鼓了一下午..按堆建树 写完交 返回TLE..数据不大 感觉不会超了 无奈拿了数据来看什么奇葩数据会超 发现数据跟我输出不一样 看了好久才明白理解错题意了 给出的字符串有两个标签 按前一个来建 ...
- Android使用Gson(相当于C#的Newtonsoft.Json)非常好用
C#转Java有一段时间了,之前做ASP.NET WebAPI微软竟将第三方类库Newtonsoft.Json作为VS新建MVC和WebAPI项目默认必备的Json工具Nuget包,可想而知这个包有多 ...
- ibatis 的sqlMap 的xml 关注点
1.当有特殊字符时候需要保持原状 eg:特殊字符 <> 错误:t.name<>' ' 会报The content of elements must consist of ...
- JavaScript——class与原型对象
原型对象的意义 通过new 一个构造函数,我们能够获得一个实例,在new 的过程中,程序会在内存中申请一块区域,同时我们可以加参数,所以每个对象都不一样. 原型对象则是同一个构造函数 new 出来的所 ...
- Node.js——优先从缓存加载
main中执行require操作,目的是获取接口对象,所以多次引用b,并不会重复执行模块内部的输入输出,因为缓存中已经存在
- div根据鼠标的移入移除显示隐藏
onmouseout 是把div当成一个对象,div里面包含的元素当成别的对象,所以移动的时候,会隐藏,达不到我们预期的效果. onmouseleave 就是把整个div当成一个对象. 大家可以去试 ...
- python中break、continue 、exit() 、pass终止循环的区别
python中break.continue .exit() .pass区分 1.break:跳出循环,不再执行 Python break语句,就像在C语言中,打破了最小封闭for或while循环. b ...
- Python 源码分析:queue 队列模块
起步 queue 模块提供适用于多线程编程的先进先出(FIFO)数据结构.因为它是线程安全的,所以多个线程很轻松地使用同一个实例. 源码分析 先从初始化的函数来看: 从这初始化函数能得到哪些信息呢?首 ...
- Java基础(十四)--装箱、拆箱详解
Java中基本数据类型都有相对应的包装类 什么是装箱?什么是拆箱? 在Java SE5之前,Integer是这样初始化的 Integer i = new Integer(10); 而在从Java SE ...