# 题目大意

对于一个数 $x$,它的每一位数字分别是 $A_{n}A_{n-1}A_{n-2}\cdots A_{2}A_{1}$,定义其权重 $f(x)=\sum_{i=1}^{n}\left(A_i\times 2^{i-1}\right)$。

现在给定两个数 $A,B$ 求出 $[0,B]$ 中满足 $f(i)\le f(A)$ 的数的个数。

# 解题思路

数位 $\text{DP}$。

我一开始设的状态是 $dp[i][j]$ 表示到第 $i$ 位,并且现在已经枚举到的数位的权重是 $j$,写完之后发现会 $\text{TLE}$,因为相对与每组数据来说它们的 $A$ 不是一样的,按上面的状态设计方程会导致记忆化下来的答案并不是通用的,需要每次都 $memset$ $dp$ 数组。

然后考虑另一种状态,另第一维的意义不变,将第二维变成剩余的可用权值(大体就是那么个意思),然后做记忆化。

# 附上代码

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int a, b, pow[], T, dp[][], cnt, num[], fa;
inline void init() {
pow[] = ;
for(int i=; i<=; i++) pow[i] = pow[i-] * ;
}
inline int dfs(int l, int f, bool limit) {
if(dp[l][f] && !limit) return dp[l][f];
if(l == ) return f >= ;
int ans = , mx = limit ? num[l] : ;
for(int i=; i<=mx; i++) {
if(f - i * pow[l-] < ) continue;
ans += dfs(l-, f-i*pow[l-], limit && i==mx);
}
return (!limit) ? dp[l][f]=ans : ans;
}
inline int solve(int x) {
int k = ;
while (x) {
num[++k] = x % ;
x /= ;
}
return dfs(k, fa, true);
}
inline void fff(int x) {
fa = ;
int k = ;
while (x) {
fa += pow[k] * (x % );
k ++;
x /= ;
}
}
int main() {
init();
scanf("%d", &T);
while (T--) {
scanf("%d%d", &a, &b);
fff(a);
printf("Case #%d: %d\n", ++cnt, solve(b));
}
}

「 HDU P4734 」 F(x)的更多相关文章

  1. Solution -「HDU 6875」Yajilin

    \(\mathcal{Description}\)   Link.(HDU 裂开了先放个私链 awa.)   在一个 \(n\times n\) 的方格图中,格子 \((i,j)\) 有权值 \(w_ ...

  2. Solution -「HDU 5498」Tree

    \(\mathcal{Description}\)   link.   给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边.问 \(q\) 条边去重后构成生成 ...

  3. 「 HDU 1978 」 How many ways

    # 解题思路 记忆化搜索 一个点可以跳到的点,取决于它现在的能量.而且有一个显而易见的性质就是一条可行路径的终点和起点的横坐标之差加上纵坐标之差肯定小于等于起点的能量. 因为跳到一个点之后,能量和之前 ...

  4. 「 HDU P3336 」 Count the string

    题目大意 给出一个长度为 $n$ 的字符串 $s$ 要求你求出 $s$ 的每一个前缀在 $s$ 中出现的次数之和.$n\le 200000$. 解题思路 暴力的对每一个前缀进行一次匹配,求出出现次数后 ...

  5. Solution -「HDU 6643」Ridiculous Netizens

    \(\mathcal{Description}\)   Link.   给定一棵含有 \(n\) 个结点的树,点 \(u\) 有点权 \(w_u\),求树上非空连通块的数量,使得连通块内点权积 \(\ ...

  6. Solution -「HDU #6566」The Hanged Man

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个点的树,每个结点有两个权值 \(a\) 和 \(b\).对于 \(k\in[1,m]\),分别求 \[ ...

  7. 「HDU - 2857」Mirror and Light(点关于直线的对称点)

    题目链接 Mirror and Light 题意 一条直线代表镜子,一个入射光线上的点,一个反射光线上的点,求反射点.(都在一个二维平面内) 题解 找出入射光线关于镜子直线的对称点,然后和反射光线连边 ...

  8. 「 HDU P2089 」 不要62

    和 HDOJ 3555 一样啊,只不过需要多判断个 ‘4’ 我有写 3555 直接去看那篇吧 这里只放代码 #include <iostream> #include <cstring ...

  9. 「 HDU P3555 」 Bomb

    # 题目大意 给出 $\text{T}$ 个数,求 $[1,n]$ 中含 ‘49’ 的数的个数. # 解题思路 求出不含 '49' 的数的个数,用总数减去就是答案. 数位 $DP$,用记忆化来做. 设 ...

随机推荐

  1. redis info 参数说明

    原文: redis info 参数说明 redis 127.0.0.1:6381> info redis_version:2.4.16 # Redis 的版本redis_git_sha1:000 ...

  2. HDU 4893 Wow! Such Sequence! (树状数组)

    题意:给有三种操作,一种是 1 k d,把第 k 个数加d,第二种是2 l r,查询区间 l, r的和,第三种是 3 l r,把区间 l,r 的所有数都变成离它最近的Fib数, 并且是最小的那个. 析 ...

  3. 代码中特殊的注释技术——TODO、FIXME和XXX的用处 (转载)

    转自:http://blog.csdn.net/reille/article/details/7161942 作者:reille 本博客网址:http://blog.csdn.net/reille/, ...

  4. E201700525-hm

    skeleton n. 骨骼; (建筑物等的) 骨架; 梗概; 骨瘦如柴的人(或动物);adj. 骨骼的; 骨瘦如柴的; 概略的; 基本的; cloud   n. 云; 云状物;  invoke   ...

  5. bzoj 1614: [Usaco2007 Jan]Telephone Lines架设电话线【二分+spfa】

    二分答案,然后把边权大于二分值的的边赋值为1,其他边赋值为0,然后跑spfa最短路看是否满足小于等于k条边在最短路上 #include<iostream> #include<cstd ...

  6. 爬虫—Requests高级用法

    Requests高级用法 1.文件上传 我们知道requests可以模拟提交一些数据.假如有的网站需要上传文件,我们也可以用requests来实现. import requests files = { ...

  7. 超级实用的VSCode插件,帮你大幅提高工作效率

    Visual Studio Code是一个轻量级但功能强大的源代码编辑器,可在桌面上运行,适用于Windows,macOS和Linux. 它内置了对JavaScript,TypeScript和Node ...

  8. [Usaco2003 Open]Lost Cows

    Description N (2 <= N <= 8,000) cows have unique brands in the range 1..N. In a spectacular di ...

  9. 08 H5新增input元素

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  10. 转 Dock 外 命令解析

    RUN vs CMD vs ENTRYPOINT - 每天5分钟玩转 Docker 容器技术(17) 小结: run 主要是安装镜像,安装软件. CMD 设置容器启动后默认执行的命令及其参数,但 CM ...