官方博客 WaveNet: A Generative Model for Raw Audio

paper地址:paper

Abstract

WaveNet是probabilistic and autoregressive的生成,对每个预测的audio sample的分布都基于前面的前面的sample分布。在TTS的应用中,能达到state_of_art的效果,听觉感受上优于parametric and concatenative的系统。同时系统还可以生成音乐,作为discriminative model对phoneme做识别

Introduction

受neural autore-gressive generative models生成图像的启发[1][2]来生成wideband raw audio waveforms,主要挑战在于每秒采样率高达16,000 samples。

Contributions

1.We show that WaveNets can generate raw speech signals with subjective naturalness never before reported in the field of text-to-speech (TTS), as assessed by human raters。

2. In order to deal with long-range temporal dependencies needed for raw audio generation,we  develop new architectures based on dilated causal convolutions,  which  exhibit  very large receptive fields.(超大感受野)

3.We show that when conditioned on a speaker identity, a single model can be used to generate different voices

4.The same architecture shows strong results when tested on a small speech recognition dataset, and is promising when used to generate other audio modalities such as music

WaveNet

概率模型: Each audio sample xt is therefore conditioned on the samples at all previous timesteps, the conditional probability distribution is modelled by a stack of convolutional layers.

The model outputs a categorical distribution over the next value Xwith a softmax layer and it is optimized to maximize the log-likelihood of the data w.r.t.  the parameters.  Because log-likelihoods are tractable, we tune hyper-
parameters on a validation set and can easily measure if the model is overfitting or underfitting

  • DILATED CAUSAL CONVOLUTIONS:

The main ingredient of WaveNet are causal convolution。Because models with causal convolutions do not have recurrent connections, they are typically faster to train than RNNs, especially when applied to very long sequences(只有因果卷积,而没有递归连接)。One of the problems of causal convolutions is that they require many layers,  or large filters to increase the receptive field. For example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1)

A dilated convolution (also called a trous, or convolution with holes) is a convolution where the filter is applied over an area larger than its length by skipping input values with a certain step。Stacked dilated convolutions enable networks to have very large receptive fields with just a few layers, while preserving the input resolution throughout the network as well as computational efficiency

  • SOFTMAX DISTRIBUTIONS

Softmax distribution tends to work better to modeling the conditional distributions over the individual audio samples。Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible value.这里用[3]提出的$\{mu}-law$方法做了一个量化压缩,将输出概率数目压缩到了256个可能的值

这个非线性压缩变换后的声音效果和原声音相差不大

  • GATED ACTIVATION UNITS

使用了和[1]相同的gated激活单元:

  • RESIDUAL AND SKIP CONNECTIONS

  Both resudula and skip method are used to speed up convergence and enable training of much deeper model

  

  • CONDITIONAL WAVE NET

For example, in a multi-speaker setting we can choose the speaker by feeding the speaker identity to the model as an extra input.  Similarly, for TTS we need to feed information about the text as an extra input.

Global conditioning is characterised by a single latent representation h that influences the output distribution across all timestep:

模型中采用的扩大卷积的方法来极大的增加感受野,对序列数据建模很有用

[1]van den Oord, A  ̈ aron, Kalchbrenner, Nal, and Kavukcuoglu, Koray. Pixel recurrent neural networks.

[2]J  ́ ozefowicz, Rafal, Vinyals, Oriol, Schuster, Mike, Shazeer, Noam, and Wu, Yonghui. Exploring the

[3] ITU-T. Recommendation G. 711. Pulse Code Modulation (PCM) of voice frequencies, 1988

WaveNet: 原始音频生成模型的更多相关文章

  1. ICML 2018 | 从强化学习到生成模型:40篇值得一读的论文

    https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届 ...

  2. GAN︱生成模型学习笔记(运行机制、NLP结合难点、应用案例、相关Paper)

    我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...

  3. 快速开发 HTML5 WebGL 的 3D 斜面拖拽生成模型

    前言 3D 场景中的面不只有水平面这一个,空间是由无数个面组成的,所以我们有可能会在任意一个面上放置物体,而空间中的面如何确定呢?我们知道,空间中的面可以由一个点和一条法线组成.这个 Demo 左侧为 ...

  4. 原始的生成对抗网络GAN

    论文地址:https://arxiv.org/pdf/1406.2661.pdf 1.简介: GAN的两个模型 判别模型:就是图中右半部分的网络,直观来看就是一个简单的神经网络结构,输入就是一副图像, ...

  5. GAN实战笔记——第二章自编码器生成模型入门

    自编码器生成模型入门 之所以讲解本章内容,原因有三. 生成模型对大多数人来说是一个全新的领域.大多数人一开始接触到的往往都是机器学习中的分类任务--也许因为它们更为直观:而生成模型试图生成看起来很逼真 ...

  6. 《Entity Framework 6 Recipes》中文翻译系列 (40) ------ 第七章 使用对象服务之从跟踪器中获取实体与从命令行生成模型(想解决EF第一次查询慢的,请阅读)

    翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 7-5  从跟踪器中获取实体 问题 你想创建一个扩展方法,从跟踪器中获取实体,用于数 ...

  7. 生成模型(Generative Model)与判别模型(Discriminative Model)

    摘要: 1.定义 2.常见算法 3.特性 4.优缺点 内容: 1.定义 1.1 生成模型: 在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下.它给观测值和标 ...

  8. MySQL生成模型

    根据数据库表生成Model using System; using System.Collections.Generic; using System.Data; using System.Text; ...

  9. 生成模型(Generative)和判别模型(Discriminative)

    生成模型(Generative)和判别模型(Discriminative) 引言    最近看文章<A survey of appearance models in visual object ...

随机推荐

  1. 解决树莓派8G的SD卡只能识别3.3G,SD卡扩容

    8GB microSD在Windows下使用Win32 Disk Imager下载映像后,在RPi中只能识别出3.3GB.而本身还有很多容量没有释放出来. 使用sudo raspi-config工具可 ...

  2. BUPT复试专题—List(2015)

    题目描述 在该LIST上实现3种操作 1.append x在该LIST末尾添加x,x是32位整数 2.pop删除该LIST末尾的数 3.find i寻找第i个数,若i为负数表示寻找倒数第i个数,例如i ...

  3. BUPT复试专题—寻找i*j=m的个数(2016)

    题目描述 3*3的矩阵内容. 1 2 3 2 4 6 3 6 9 即a[i][j](1<=i<=n,1<=j<=n)=i*j. 问一个这样n*n的矩阵里面,里面m出现的次数. ...

  4. start_kernel——mm_init_owner

    全部任务都具有自己的内存,启动阶段中的当前任务必须具备属于自己的内存. mm_init_owner()函数传递init_mm和init_task參数 mm/init-mm.c struct mm_st ...

  5. Oracle创建索引的原则(转)

    Oracle 建立索引及SQL优化 数据库索引: 索引有单列索引复合索引之说 如何某表的某个字段有主键约束和唯一性约束,则Oracle 则会自动在相应的约束列上建议唯一索引.数据库索引主要进行提高访问 ...

  6. The most widely used name server software: BIND

    https://www.isc.org/downloads/bind/ The most widely used name server software: BIND BIND is open sou ...

  7. FastDFS的配置、部署与API使用解读(1)Get Started with FastDFS(转)

    转载请注明来自:诗商·柳惊鸿CSDN博客,原文链接:FastDFS的配置.部署与API使用解读(1)入门使用教程 1.背景 FastDFS是一款开源的.分布式文件系统(Distributed File ...

  8. 拒绝干扰 解决Wi-Fi的最大问题

    本文转载至:http://www.ciotimes.com/net/rdjs/WI-FI/201006301920.html 射频干扰英文:RFI,(Radio Frequency Interfere ...

  9. 第一讲:使用html5——canvas绘制奥运五环

    <html> <head> <title>初识canvas</title> </head> <body> <canvas ...

  10. diamond简介和使用

    简介 diamond是淘宝内部使用的一个管理持久配置的系统,它的特点是简单.可靠.易用,目前淘宝内部绝大多数系统的配置,由diamond来进行统一管理. diamond为应用系统提供了获取配置的服务, ...