官方博客 WaveNet: A Generative Model for Raw Audio

paper地址:paper

Abstract

WaveNet是probabilistic and autoregressive的生成,对每个预测的audio sample的分布都基于前面的前面的sample分布。在TTS的应用中,能达到state_of_art的效果,听觉感受上优于parametric and concatenative的系统。同时系统还可以生成音乐,作为discriminative model对phoneme做识别

Introduction

受neural autore-gressive generative models生成图像的启发[1][2]来生成wideband raw audio waveforms,主要挑战在于每秒采样率高达16,000 samples。

Contributions

1.We show that WaveNets can generate raw speech signals with subjective naturalness never before reported in the field of text-to-speech (TTS), as assessed by human raters。

2. In order to deal with long-range temporal dependencies needed for raw audio generation,we  develop new architectures based on dilated causal convolutions,  which  exhibit  very large receptive fields.(超大感受野)

3.We show that when conditioned on a speaker identity, a single model can be used to generate different voices

4.The same architecture shows strong results when tested on a small speech recognition dataset, and is promising when used to generate other audio modalities such as music

WaveNet

概率模型: Each audio sample xt is therefore conditioned on the samples at all previous timesteps, the conditional probability distribution is modelled by a stack of convolutional layers.

The model outputs a categorical distribution over the next value Xwith a softmax layer and it is optimized to maximize the log-likelihood of the data w.r.t.  the parameters.  Because log-likelihoods are tractable, we tune hyper-
parameters on a validation set and can easily measure if the model is overfitting or underfitting

  • DILATED CAUSAL CONVOLUTIONS:

The main ingredient of WaveNet are causal convolution。Because models with causal convolutions do not have recurrent connections, they are typically faster to train than RNNs, especially when applied to very long sequences(只有因果卷积,而没有递归连接)。One of the problems of causal convolutions is that they require many layers,  or large filters to increase the receptive field. For example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1)

A dilated convolution (also called a trous, or convolution with holes) is a convolution where the filter is applied over an area larger than its length by skipping input values with a certain step。Stacked dilated convolutions enable networks to have very large receptive fields with just a few layers, while preserving the input resolution throughout the network as well as computational efficiency

  • SOFTMAX DISTRIBUTIONS

Softmax distribution tends to work better to modeling the conditional distributions over the individual audio samples。Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible value.这里用[3]提出的$\{mu}-law$方法做了一个量化压缩,将输出概率数目压缩到了256个可能的值

这个非线性压缩变换后的声音效果和原声音相差不大

  • GATED ACTIVATION UNITS

使用了和[1]相同的gated激活单元:

  • RESIDUAL AND SKIP CONNECTIONS

  Both resudula and skip method are used to speed up convergence and enable training of much deeper model

  

  • CONDITIONAL WAVE NET

For example, in a multi-speaker setting we can choose the speaker by feeding the speaker identity to the model as an extra input.  Similarly, for TTS we need to feed information about the text as an extra input.

Global conditioning is characterised by a single latent representation h that influences the output distribution across all timestep:

模型中采用的扩大卷积的方法来极大的增加感受野,对序列数据建模很有用

[1]van den Oord, A  ̈ aron, Kalchbrenner, Nal, and Kavukcuoglu, Koray. Pixel recurrent neural networks.

[2]J  ́ ozefowicz, Rafal, Vinyals, Oriol, Schuster, Mike, Shazeer, Noam, and Wu, Yonghui. Exploring the

[3] ITU-T. Recommendation G. 711. Pulse Code Modulation (PCM) of voice frequencies, 1988

WaveNet: 原始音频生成模型的更多相关文章

  1. ICML 2018 | 从强化学习到生成模型:40篇值得一读的论文

    https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届 ...

  2. GAN︱生成模型学习笔记(运行机制、NLP结合难点、应用案例、相关Paper)

    我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...

  3. 快速开发 HTML5 WebGL 的 3D 斜面拖拽生成模型

    前言 3D 场景中的面不只有水平面这一个,空间是由无数个面组成的,所以我们有可能会在任意一个面上放置物体,而空间中的面如何确定呢?我们知道,空间中的面可以由一个点和一条法线组成.这个 Demo 左侧为 ...

  4. 原始的生成对抗网络GAN

    论文地址:https://arxiv.org/pdf/1406.2661.pdf 1.简介: GAN的两个模型 判别模型:就是图中右半部分的网络,直观来看就是一个简单的神经网络结构,输入就是一副图像, ...

  5. GAN实战笔记——第二章自编码器生成模型入门

    自编码器生成模型入门 之所以讲解本章内容,原因有三. 生成模型对大多数人来说是一个全新的领域.大多数人一开始接触到的往往都是机器学习中的分类任务--也许因为它们更为直观:而生成模型试图生成看起来很逼真 ...

  6. 《Entity Framework 6 Recipes》中文翻译系列 (40) ------ 第七章 使用对象服务之从跟踪器中获取实体与从命令行生成模型(想解决EF第一次查询慢的,请阅读)

    翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 7-5  从跟踪器中获取实体 问题 你想创建一个扩展方法,从跟踪器中获取实体,用于数 ...

  7. 生成模型(Generative Model)与判别模型(Discriminative Model)

    摘要: 1.定义 2.常见算法 3.特性 4.优缺点 内容: 1.定义 1.1 生成模型: 在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下.它给观测值和标 ...

  8. MySQL生成模型

    根据数据库表生成Model using System; using System.Collections.Generic; using System.Data; using System.Text; ...

  9. 生成模型(Generative)和判别模型(Discriminative)

    生成模型(Generative)和判别模型(Discriminative) 引言    最近看文章<A survey of appearance models in visual object ...

随机推荐

  1. Spring 详解(三)------- SpringMVC拦截器使用

    目录 不拦截静态资源 使用拦截器 拦截器使用测试 SimpleMappingExceptionResolver 拦截异常 不拦截静态资源 如果配置拦截类似于*.do格式的拦截规则,则对静态资源的访问是 ...

  2. 初涉Git/Github

    初涉Git/Github 第一部分:我的本次作业成果 我自己个人的github地址是:STRSong 我们开发团队小组的github地址是:三组 第二部分:给同学推荐github资源 推荐1 这个推荐 ...

  3. 【chrome错误】Cross origin requests are only supported for protocol schemes: http, data,chrome-extension, https, chrome-extension-reso

    使用ajax请求本地文件,chrome会报跨域错误. XMLHttpRequest cannot loadfile:///C:/Users/Li/Desktop/images/alist.json.C ...

  4. linxu下查看进程的线程方法;如何知道某个进程或者线程运行在哪个CPU上?

    1.top -H -p <pid>  ; top -H 在top命令后,按H键:或者top -H 2.ps -T -p <pid> “-T”选项可以开启线程查看 3.htop, ...

  5. 【Todo】ssh的原理和实践

    有空的时候补充,可以参考 http://www.ruanyifeng.com/blog/2011/12/ssh_remote_login.html http://www.ruanyifeng.com/ ...

  6. Invocation of destroy method failed on bean with name ‘XXXX’

    项目启动报错问题:Invocation of destroy method failed on bean with name 'scopedTarget.eurekaClient': org.spri ...

  7. weex 引导页(guide)页面

    slider 和 indicator 都是 weex 的内置组件,且 indicator 是 slider 的子组件. 1.报错处理 原因解析:indicator 样式页面渲染慢 解决方案:indic ...

  8. java中等待所有线程都执行结束(转)

    转自:http://blog.csdn.net/liweisnake/article/details/12966761 今天看到一篇文章,是关于java中如何等待所有线程都执行结束,文章总结得很好,原 ...

  9. HDOJ How many ways?? 2157【矩阵高速幂】

    How many ways? ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  10. Jsp在Web.xml中的配置

    以下列出web.xml经常使用的标签元素及这些标签元素的功能: 1.指定欢迎页面.比如: <welcome-file-list> <welcome-file-list> < ...