[bzoj 2705][SDOI2012]Longge的问题(数学)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2705
分析:
设k为n的因数
设f[k]为gcd(x,n)==k的x的个数,容易知道ans=∑f[k]*k
那么接下里就是如何求f[k]的问题了
∵gcd(x,n)=k
∴gcd(x/k,n/k)=1
也就是说要在n/k以内找到与n/k互质的数的个数,明显就是欧拉函数,所以f[k]=φ(n/k)
[bzoj 2705][SDOI2012]Longge的问题(数学)的更多相关文章
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2554 Solved: 1566[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题 GCD
2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...
- bzoj 2705: [SDOI2012]Longge的问题 歐拉函數
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1035 Solved: 669[Submit][S ...
- Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题( 数论 )
T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...
- [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]
[bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...
- bzoj 2705: [SDOI2012]Longge的问题——欧拉定理
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...
- BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2705 [题目大意] 求出∑gcd(i,N)(1<=i<=N) [题解] $ ...
随机推荐
- python自动化测试学习笔记-8单元测试unittest模块
官方参考文档:http://docs.python.org/2.7/library/unittest.html unittest是一个python版本的junit,junit是java中的单元测试框架 ...
- ActiveMQ命令行工具
命令行工具 命令行工具 n activemq——运行activemq代理 n activemq-admin——管理代理的实例 在5.0之前activemq-admin被分成多个脚本,例如 ...
- MVC之参数验证(一)
ASP.NET MVC采用Model绑定为目标Action生成了相应的参数列表,但是在真正执行目标Action方法之前,还需要对绑定的参数实施验证以确保其数据的准确性.总地来说,我们可以采用Syste ...
- [ NOI 2002 ] Robot
\(\\\) Description \(\\\) Solution 垃圾语文题毁我青春 这题其实就是重定义了俩函数.... 首先 \(\varphi(1)=0\) . 然后 \(2\) 在计算 \( ...
- protobuf的lua版
推荐个protobuf的lua版 以前项目客户端lua,通信协议是protobuf,用网易的proto-gen-lua,使用过程遇到些问题需要绕,比如: 1.每次更改.增加proto都要生成新 ...
- 【工具】Webpack
远程仓库建立 码云创建组织项目 git clone ssh 切换到主分支mmall-fe后git remote add origin ssh git pull origin master把master ...
- 多路开关模式的switch语句
在实例10中,将break语句去掉之后,会将符合检验条件后的所有语句都输出.利用这个特点,可以设计多路开关模式的switch语句,例如:在平年一年12个月,1.3.5.7.8.10.12月是31天,4 ...
- React Native组件的结构和生命周期
React Native组件的结构和生命周期 一.组件的结构 1.导入引用 可以理解为C++编程中的头文件. 导入引用包括导入react native定义的组件.API,以及自定义的组件. 1.1 导 ...
- ajax的底层前后台交互
为什么用ajax或者它的优点: 异步加载数据,无需切换页面 更加的用户体验,局部刷新,及时验证,操作步骤简化: 节省流量 js控制数据的加载,更加灵活多用. 底层就是XMLHttpRequest对象: ...
- (转)淘淘商城系列——Redis持久化方案
http://blog.csdn.net/yerenyuan_pku/article/details/72858975 Redis中设置key的过期时间 Redis中的expire命令用于设置key的 ...