题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2705

分析:

设k为n的因数

设f[k]为gcd(x,n)==k的x的个数,容易知道ans=∑f[k]*k

那么接下里就是如何求f[k]的问题了

∵gcd(x,n)=k

∴gcd(x/k,n/k)=1

也就是说要在n/k以内找到与n/k互质的数的个数,明显就是欧拉函数,所以f[k]=φ(n/k)

[bzoj 2705][SDOI2012]Longge的问题(数学)的更多相关文章

  1. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  2. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  3. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  4. bzoj 2705: [SDOI2012]Longge的问题 歐拉函數

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1035  Solved: 669[Submit][S ...

  5. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  6. BZOJ 2705: [SDOI2012]Longge的问题( 数论 )

    T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...

  7. [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]

    [bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...

  8. bzoj 2705: [SDOI2012]Longge的问题——欧拉定理

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...

  9. BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2705 [题目大意] 求出∑gcd(i,N)(1<=i<=N) [题解] $ ...

随机推荐

  1. Androidstudio的安装与使用调试

    1安装与基本使用 1.1androidstudio的安装 1.到android-studio\bin文件夹里面,根据自己的电脑配置,打开studio.exe或者studio64.exe 2.按照向导默 ...

  2. 410 Split Array Largest Sum 分割数组的最大值

    给定一个非负整数数组和一个整数 m,你需要将这个数组分成 m 个非空的连续子数组.设计一个算法使得这 m 个子数组各自和的最大值最小.注意:数组长度 n 满足以下条件:    1 ≤ n ≤ 1000 ...

  3. python tkinter窗口置顶

    下面两句即可实现root窗口的置顶显示,可以用于某些程序的消息提示,能够弹出到桌面显示 root = Tk()root.wm_attributes('-topmost',1)

  4. springboot与dubbo整合入门(三种方式)

    Springboot与Dubbo整合三种方式详解 整合环境: jdk:8.0 dubbo:2.6.2 springboot:2.1.5 项目结构: 1.搭建项目环境: (1)创建父项目与三个子项目,创 ...

  5. poj2502 Subway

    思路: 需要注意的地方:一条地铁线路并不一定和样例描述的那样是直的:同一条线路上的两个站点步行可能更快. 实现: #include <iostream> #include <cstd ...

  6. Android开发: 关于性能需要考虑的

    刚做Android开发时,只管完成任务,将需求完成,以能完成一款界面酷炫的app为自豪.然而,随着代码量的增加,越来越意识到,一款成功的移动端产品,光有酷炫的外衣还不够,还需要在各方面都优秀. 试想, ...

  7. 上传一个npm包

    1.先创建一个npm账号 https://www.npmjs.com/signup 2.在cmd里输入命令进入项目文件夹 3.使用npm init 命令创建一个package.json(确保nodej ...

  8. win7下安装MySQL 5.7.19(解压缩版)

    1.官网下载地址:https://downloads.mysql.com/archives/community/ 下载后,得到压缩包: 2.解压,我的解压目录为:E:\mysql-5.7.19\mys ...

  9. HanLP自然语言处理包开源(包含源码)

    支持中文分词(N-最短路分词.CRF分词.索引分词.用户自定义词典.词性标注),命名实体识别(中国人名.音译人名.日本人名.地名.实体机构名识别),关键词提取,自动摘要,短语提取,拼音转换,简繁转换, ...

  10. SqlBulkCopy实现大批量数据导入

    //自增列重新生成:SqlBulkCopy bc = new SqlBulkCopy(conn) //自增列保留原值:SqlBulkCopy bc = new SqlBulkCopy(conn,Sql ...