【bzoj1059】[ZJOI2007]矩阵游戏 二分图最大匹配
题目描述
输入
输出
输出文件应包含T行。对于每一组数据,如果该关卡有解,输出一行Yes;否则输出一行No。
样例输入
2
2
0 0
0 1
3
0 0 1
0 1 0
1 0 0
样例输出
No
Yes
题解
二分图最大匹配
本题和“给你一些黑色格子,问能否选出n个,使得每行、每列有且仅有一个黑色格子”是相同的。
证明:
必要性:假设不能使得每行、每列有且仅有至少一个黑色格子,那么一定存在某行或列不存在黑色格子,无论如何交换,该行或列都不存在黑色格子,故无解。必要性证毕。
充分性:如果存在某种选择方式使得每行、每列都有且仅有一个黑色格子,那么我们只考虑这n个格子,无论如何交换它们的行或列,每行、每列依然都有且仅有一个黑色格子。从1到n考虑,对于第i行,如果该行不合法,那么一定存在i+1~n行的某行中第i列为黑色。此时只需要交换这两列即可。进行到第n行时,由于前n-1行和前n-1列都已经有黑色格子,那么最后一个黑色格子一定存在于第n行第n列。故所有每行、每列有且仅有一个黑色格子的情况均有解。充分性证毕。
于是这道看起来十分复杂的题就变成了经典二分图傻*题,两个集合分别为行和列,黑色节点的行和列之间连边,问最小点覆盖是否为n。转化为最大匹配求即可。
这里为了效率跑了dinic。
- #include <cstdio>
- #include <cstring>
- #include <queue>
- #define N 500
- #define M 200000
- using namespace std;
- queue<int> q;
- int head[N] , to[M] , val[M] , next[M] , cnt , s , t , dis[N];
- void add(int x , int y , int z)
- {
- to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
- to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
- }
- bool bfs()
- {
- int x , i;
- memset(dis , 0 , sizeof(dis));
- while(!q.empty()) q.pop();
- dis[s] = 1 , q.push(s);
- while(!q.empty())
- {
- x = q.front() , q.pop();
- for(i = head[x] ; i ; i = next[i])
- {
- if(val[i] && !dis[to[i]])
- {
- dis[to[i]] = dis[x] + 1;
- if(to[i] == t) return 1;
- q.push(to[i]);
- }
- }
- }
- return 0;
- }
- int dinic(int x , int low)
- {
- if(x == t) return low;
- int temp = low , i , k;
- for(i = head[x] ; i ; i = next[i])
- {
- if(val[i] && dis[to[i]] == dis[x] + 1)
- {
- k = dinic(to[i] , min(temp , val[i]));
- if(!k) dis[to[i]] = 0;
- val[i] -= k , val[i ^ 1] += k;
- if(!(temp -= k)) break;
- }
- }
- return low - temp;
- }
- int main()
- {
- int T;
- scanf("%d" , &T);
- while(T -- )
- {
- int n , i , j , x;
- scanf("%d" , &n) , s = 0 , t = 2 * n + 1;
- memset(head , 0 , sizeof(head)) , cnt = 1;
- for(i = 1 ; i <= n ; i ++ ) add(s , i , 1) , add(i + n , t , 1);
- for(i = 1 ; i <= n ; i ++ )
- {
- for(j = 1 ; j <= n ; j ++ )
- {
- scanf("%d" , &x);
- if(x) add(i , j + n , 1);
- }
- }
- while(bfs()) n -= dinic(s , 1 << 30);
- printf("%s\n" , n ? "No" : "Yes");
- }
- return 0;
- }
【bzoj1059】[ZJOI2007]矩阵游戏 二分图最大匹配的更多相关文章
- BZOJ 1059 [ZJOI2007]矩阵游戏 (二分图最大匹配)
1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5281 Solved: 2530[Submit][Stat ...
- [bzoj1059] [ZJOI2007] 矩阵游戏 (二分图匹配)
小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏--矩阵游戏.矩阵游戏在一个N *N黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行两种操作:行交换操作:选 ...
- BZOJ1059 [ZJOI2007]矩阵游戏 二分图匹配 匈牙利算法
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1059 题意概括 有一个n*n(n<=200)的01矩阵,问你是否可以通过交换整行和整列使得左 ...
- [luogu1129 ZJOI2007] 矩阵游戏 (二分图最大匹配)
传送门 Description Input Output Sample Input 2 2 0 0 0 1 3 0 0 1 0 1 0 1 0 0 Sample Output No Yes HINT ...
- BZOJ1059 ZJOI2007 矩阵游戏 【二分图匹配】
BZOJ1059 ZJOI2007 矩阵游戏 Description 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏--矩阵游戏.矩阵游戏在一个N*N黑白方阵进行(如同国际象棋一 ...
- BZOJ [ZJOI2007]矩阵游戏(二分图匹配)
1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 6390 Solved: 3133[Submit][Stat ...
- bzoj 1059: [ZJOI2007]矩阵游戏 二分图匹配
1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1891 Solved: 919[Submit][Statu ...
- [bzoj1059][ZJOI2007]矩阵游戏_二分图最大匹配
矩阵游戏 bzoj-1059 ZJOI-2007 题目大意:给定一个n*n的棋盘,上面有一些格子被染黑,剩下都是白色.你每次可以交换两列或者两行,问你能否通过一系列操作使得棋盘的主对角线上的格子全是黑 ...
- bzoj 1059: [ZJOI2007]矩阵游戏 [二分图][二分图最大匹配]
Description 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏.矩阵游戏在一个N *N黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行 ...
随机推荐
- uvm_reg_model——寄存器模型(一)
对于一个复杂设计,寄存器模型要能够模拟任意数量的寄存器域操作.UVM提供标准的基类库,UVM的寄存器模型来自于继承自VMM的RAL(Register Abstract Layer),现在可以先将寄存器 ...
- 学习用5W1H来管理自己的项目/工作
学习用5W1H来管理自己的项目/工作 最近开始需要系统化的思维模型,这只是一个开始,一下用脑图的形式来简介5W1H的具体内容: 先写xmind思维树的文本导出,后面附上图片.^ _ ^ 5W1H ...
- win7下如何解决协议适配器错误问题
数据库为oracle 11g,在cmd中使用sqlplus命令出现了“协议适配器错误”. 原因分析:oracle相关服务没有启动. 解决办法如下: step1:进入服务页面. 方法一:cmd → se ...
- 洛谷 P1734 最大约数和
题目描述 选取和不超过S的若干个不同的正整数,使得所有数的约数(不含它本身)之和最大. 输入输出格式 输入格式: 输入一个正整数S. 输出格式: 输出最大的约数之和. 输入输出样例 输入样例#1: 1 ...
- 如何处理Docker错误消息:please add——insecure-registry
本地安装Kubernetes时,遇到如下的错误消息: pleade add --insecure-registry gcr.io to daemon's arguments 解决方案:点击Docker ...
- 粗谈Android未来前景
Andriod作为智能手机机兴起的操作系统,有着非同寻常的地位.而相对于他的竞争对手ios,两大系统各有自身的优缺点,有太多的不同点,但相比较用户体验来说ios略胜一筹. Android系统极具开发性 ...
- 目后佐道IT教育的品牌故事
关于目后佐道 目后佐道IT教育作为中国IT职业教育领导品牌,致力于HTML5.UI.PHP.Java+大数据.Python+人工智能.Linux.产品经理.测试.运维等课程培训.100%全程面授,平均 ...
- 诊断 Grid Infrastructure 启动问题 (文档 ID 1623340.1)
适用于: Oracle Database - Enterprise Edition - 版本 11.2.0.1 和更高版本本文档所含信息适用于所有平台 用途 本文提供了诊断 11GR2 和 12C G ...
- Ubuntu 16.04下Java环境安装与配置
首先下载linux下的安装包 登陆网址https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.h ...
- 树形DP 统计树中长度为K的路径数量——Distance in Tree
一.问题描述 给出一棵n个节点的树,统计树中长度为k的路径的条数(1<=n<=50000 , 1<=k<=500). 二.解题思路 设d[i][k]表示以i为根节点长度为k的路 ...