[POJ1984]Navigation Nightmare

试题描述

Farmer John's pastoral neighborhood has N farms (2 <= N <= 40,000), usually numbered/labeled 1..N. A series of M (1 <= M < 40,000) vertical and horizontal roads each of varying lengths (1 <= length <= 1000) connect the farms. A map of these farms might look something like the illustration below in which farms are labeled F1..F7 for clarity and lengths between connected farms are shown as (n):

           F1 --- (13) ---- F6 --- (9) ----- F3

| |

(3) |

| (7)

F4 --- (20) -------- F2 |

| |

(2) F5

|

F7

Being an ASCII diagram, it is not precisely to scale, of course.

Each farm can connect directly to at most four other farms via roads that lead exactly north, south, east, and/or west. Moreover, farms are only located at the endpoints of roads, and some farm can be found at every endpoint of every road. No two roads cross, and precisely one path 
(sequence of roads) links every pair of farms.

FJ lost his paper copy of the farm map and he wants to reconstruct it from backup information on his computer. This data contains lines like the following, one for every road:

There is a road of length 10 running north from Farm #23 to Farm #17 
There is a road of length 7 running east from Farm #1 to Farm #17 
...

As FJ is retrieving this data, he is occasionally interrupted by questions such as the following that he receives from his navigationally-challenged neighbor, farmer Bob:

What is the Manhattan distance between farms #1 and #23?

FJ answers Bob, when he can (sometimes he doesn't yet have enough data yet). In the example above, the answer would be 17, since Bob wants to know the "Manhattan" distance between the pair of farms. 
The Manhattan distance between two points (x1,y1) and (x2,y2) is just |x1-x2| + |y1-y2| (which is the distance a taxicab in a large city must travel over city streets in a perfect grid to connect two x,y points).

When Bob asks about a particular pair of farms, FJ might not yet have enough information to deduce the distance between them; in this case, FJ apologizes profusely and replies with "-1".

输入

* Line 1: Two space-separated integers: N and M

* Lines 2..M+1: Each line contains four space-separated entities, F1,

F2, L, and D that describe a road. F1 and F2 are numbers of

two farms connected by a road, L is its length, and D is a

character that is either 'N', 'E', 'S', or 'W' giving the

direction of the road from F1 to F2. * Line M+2: A single integer, K (1 <= K <= 10,000), the number of FB's

queries * Lines M+3..M+K+2: Each line corresponds to a query from Farmer Bob

and contains three space-separated integers: F1, F2, and I. F1

and F2 are numbers of the two farms in the query and I is the

index (1 <= I <= M) in the data after which Bob asks the

query. Data index 1 is on line 2 of the input data, and so on.

输出

* Lines 1..K: One integer per line, the response to each of Bob's

queries. Each line should contain either a distance

measurement or -1, if it is impossible to determine the

appropriate distance.

输入示例

   E
E
S
N
W
S

输出示例

-

数据规模及约定

见“试题描述

题解

带权并查集,把每个关系中的位移转换成向量,然后这些向量是可以叠加的,于是就像子树权值加那样打一下懒标记搞一搞就好了。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std; int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} struct Vector {
int x, y;
Vector() {}
Vector(int _, int __): x(_), y(__) {}
Vector operator + (const Vector& t) const { return Vector(x + t.x, y + t.y); }
Vector operator += (const Vector& t) { *this = *this + t; return *this; }
Vector operator - (const Vector& t) const { return Vector(x - t.x, y - t.y); }
int dis() const { return abs(x) + abs(y); }
}; #define maxn 40010
#define maxq 10010 struct Que {
int u, v, k, id;
Que() {}
Que(int _1, int _2, int _3, int _4): u(_1), v(_2), k(_3), id(_4) {}
bool operator < (const Que& t) const { return k < t.k; }
} qs[maxq];
int ans[maxq]; struct Edge {
int f1, f2;
Vector Mov;
Edge() {}
Edge(int _1, int _2, Vector _3): f1(_1), f2(_2), Mov(_3) {}
} es[maxn]; int fa[maxn];
Vector tag[maxn];
int findset(int x) {
if(x == fa[x]) return x;
int t = findset(fa[x]);
tag[x] += tag[fa[x]];
return fa[x] = t;
} int main() {
int n = read(), m = read();
for(int i = 1; i <= m; i++) {
int u = read(), v = read(), l = read();
char dir[2];
scanf("%s", dir);
Vector Mov;
if(dir[0] == 'N') Mov = Vector(-l, 0);
if(dir[0] == 'S') Mov = Vector(l, 0);
if(dir[0] == 'W') Mov = Vector(0, -l);
if(dir[0] == 'E') Mov = Vector(0, l);
es[i] = Edge(u, v, Mov);
} int q = read();
for(int i = 1; i <= q; i++) {
int u = read(), v = read(), k = read();
qs[i] = Que(u, v, k, i);
}
sort(qs + 1, qs + q + 1); for(int i = 1; i <= n; i++) fa[i] = i, tag[i] = Vector(0, 0);
for(int i = 1, j = 1; i <= q; i++) {
while(j <= m && j <= qs[i].k) {
int u = findset(es[j].f1), v = findset(es[j].f2);
if(u != v) {
tag[v] = tag[es[j].f1] + es[j].Mov - tag[es[j].f2];
fa[v] = u;
}
j++;
}
int u = findset(qs[i].u), v = findset(qs[i].v);
if(u != v) ans[qs[i].id] = -1;
else ans[qs[i].id] = (tag[qs[i].u] - tag[qs[i].v]).dis();
} for(int i = 1; i <= q; i++) printf("%d\n", ans[i]); return 0;
}

[POJ1984]Navigation Nightmare的更多相关文章

  1. POJ1984 Navigation Nightmare —— 种类并查集

    题目链接:http://poj.org/problem?id=1984 Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K T ...

  2. POJ1984:Navigation Nightmare(带权并查集)

    Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 7871   Accepted: 2 ...

  3. POJ 1984 Navigation Nightmare 带全并查集

    Navigation Nightmare   Description Farmer John's pastoral neighborhood has N farms (2 <= N <= ...

  4. 【POJ 1984】Navigation Nightmare(带权并查集)

    Navigation Nightmare Description Farmer John's pastoral neighborhood has N farms (2 <= N <= 40 ...

  5. POJ 1984 Navigation Nightmare (数据结构-并检查集合)

    Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 4072   Accepted: 1 ...

  6. BZOJ_3362_[Usaco2004 Feb]Navigation Nightmare 导航噩梦_并查集

    BZOJ_3362_[Usaco2004 Feb]Navigation Nightmare 导航噩梦_并查集 Description     农夫约翰有N(2≤N≤40000)个农场,标号1到N,M( ...

  7. POJ 1984 Navigation Nightmare 【经典带权并查集】

    任意门:http://poj.org/problem?id=1984 Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K To ...

  8. 带权并查集【bzoj3362】: [Usaco2004 Feb]Navigation Nightmare 导航噩梦

    [bzoj]3362: [Usaco2004 Feb]Navigation Nightmare 导航噩梦 ​ 农夫约翰有N(2≤N≤40000)个农场,标号1到N,M(2≤M≤40000)条的不同的垂 ...

  9. Navigation Nightmare POJ - 1984

    Navigation Nightmare Farmer John's pastoral neighborhood has N farms (2 <= N <= 40,000), usual ...

随机推荐

  1. DNS练习之反向解析

    环境同正向解析一样. 切换到/var/named/chroot/etc目录下: 编辑named.rfc1912.zones文件,在末尾添加如下内容: [root@sishen63 etc]# vim ...

  2. Apache Kylin Cube 的存储

    不多说,直接上干货! 简单的说Cuboid的维度会映射为HBase的Rowkey,Cuboid的指标会映射为HBase的Value. Cube映射成HBase存储 如上图原始表所示:Hive表有两个维 ...

  3. AJPFX关于java的依赖 关联 聚合的关系解释

    依赖:  两个相对独立的系统,当一个系统要构筑另一个系统的实例,或者依赖另一的服务时,这两个就是依赖关系.比如自行车和打气筒之间就是依赖关系.代码表现形式如下:    public class A{  ...

  4. 如何使用 Java 生成二维码

    步骤 下载jar包(QRCode.jar) maven项目手动引入jar包 编写实体类实现二维码的生成 controller调用 下载jar包(QRCode.jar) 下载网址如下: QRCode生成 ...

  5. vue安装概要以及vue测试工具

    一.概述 1.安装node,去node官网 2.新建一个项目,通过npm init命令初始化,即创建一个package.json文件 3.用命令 npm install vue -g 全局安装vue( ...

  6. web测试需要注意点

  7. xorequation(DFS完全枚举)

    题目 有一个含有N个未知数的方程如下: x1^x2^...^xn= V,给定N,V,再给定正整数a1,a2,...an满足1≤ai≤9且∏Ni=1(ai+1)  ≤ 32768,请输出所有满足0≤xi ...

  8. 因JQUERY版本而产生的问题,需要加上迁移文件

    IMG_01_history控制台报错 IMG_02_history代码报错

  9. java 随机数 <%=System.currentTimeMillis() %>

    java 随机数<c:set var="version" value="<%=System.currentTimeMillis() %>"/& ...

  10. 和为S

    2518 和为S 2 秒 262,144 KB 10 分 2 级题   小b有一个01序列A,她想知道A有多少个非空连续子序列和为S. 你能帮帮她吗? 收起   输入 第一行输入一个数n,表示A的长度 ...