扩展欧几里得模板&逆元求法
拓展欧几里得:
当 gcd ( a , b )= d 时,求绝对值和最小的 x , y 使得 x * a + y * b = d ;
d = gcd ( a , b ) = gcd ( b , a mod b );
设:
x1 * a + y1 * b = d ; ①
x2 * b + y2 * ( a mod b ) = d ; ②
因为 a mod b = a - ( a / b )* b; ③(除法为整除)
将③代入①整理得:
y2 * a + ( x2 - ( a / b ) * y2 ) * b = d; ④
由①和④整理得:
x1 = y2 ;
y1 = x2 - ( a / b ) * y2;
将此结论代入递归函数既得。
#include<stdio.h>
#define ll long long void gcd(ll a,ll b,ll& d,ll& x,ll& y){
if(!b){d=a;x=;y=;}
else {gcd(b,a%b,d,y,x);y-=x*(a/b);}
} int main(){
ll a,b,d,x,y;
while(scanf("%lld%lld",&a,&b)!=EOF){
gcd(a,b,d,x,y);
printf("%lld*%lld+%lld*%lld=%lld\n",a,x,b,y,d);
}
return ;
}
拓展欧几里得求逆元:
当 a 与 b 互素时有 gcd ( a , b ) = 1 ;
即得: a * x + b * y = 1;
a * x ≡ 1 ( mod b );
由于 a 与 b 互素,同余式两边可以同除 a ,得:
1 * x ≡ 1 / a (mod b);
因此 x 是 a mod b 的逆元;
#include<stdio.h>
#define ll long long ll gcd(ll a,ll b,ll &d,ll& x,ll& y){
if(!b){
d=a;
x=;
y=;
return x;
}
else{
gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
return x;
} int main(){
ll a,b,d,x,y;
while(scanf("%lld%lld",&a,&b)!=EOF){
x=gcd(a,b,d,x,y);
printf("a:%lld->x:%lld\n",a,x);
}
return ;
}
MOD为素数时可以用下面2种方法求逆元
void get_inv(){
inv[]=;
for(int i=;i<mod+;i++)
inv[i]=inv[mod%i]*(mod-mod/i)%mod;
}
乘法逆元
费马小定理:当MOD是素数时,a^(MOD-1)≡1(mod MOD)。(费马小定理是欧拉定理的特殊情况)
那么逆元x=a^(MOD-2)%MOD。可以用快速幂直接求出。
Pow(a,MOD-,MOD)%MOD
http://www.cnblogs.com/pk28/p/5718855.html
扩展欧几里得模板&逆元求法的更多相关文章
- [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)
最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...
- hdu_1576A/B(扩展欧几里得求逆元)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others) Me ...
- poj 1061 青蛙的约会 (扩展欧几里得模板)
青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Status ...
- Uva12169 扩展欧几里得模板
Uva12169(扩展欧几里得) 题意: 已知 $x_i=(a*x_{i-1}+b) mod 10001$,且告诉你 $x_1,x_3.........x_{2t-1}$, 让你求出其偶数列 解法: ...
- 洛谷——P2054 [AHOI2005]洗牌(扩展欧几里得,逆元)
P2054 [AHOI2005]洗牌 扩展欧拉定理求逆元 $1 2 3 4 5 6$$4 1 5 2 6 3$$2 4 6 1 3 5$$1 2 3 4 5 6$ 手推一下样例,你就会发现是有规律的: ...
- poj 2115 C Looooops(推公式+扩展欧几里得模板)
Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...
- hdu 1576 A/B 【扩展欧几里得】【逆元】
<题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...
- 51nod1256 乘法逆元【扩展欧几里得】
给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的. Input 输入2个数M, N中间用 ...
- POJ 1061 青蛙的约会 扩展欧几里得
扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...
随机推荐
- Failed to resolve filter报错原因
问题 页面写过滤器,控制台报错,Failed to resolve filter 分析 语法错误?先检查 ``` {{ params | filterA }} filters: { filterA: ...
- 秋招复习-C++( 一)
Linux/Unix编程部分 1.进程间通信方式:信号,信号量,消息队列,共享内存,套接字Socket 2.ipcs: Linux/Unix下的命令,可以用来查看当前系统中所使用的进程间通信方式的各种 ...
- js 技巧 (六)弹窗代码汇总
弹窗代码汇总 [0.超完美弹窗代码] 功能:5小时弹一次+背后弹出+自动适应不同分辩率+准全屏显示 代码: <script> function openwin(){ window.open ...
- JavaScript:获取上传图片的base64
文章来源:http://www.cnblogs.com/hello-tl/p/7661535.html 1.HTML代码 <!DOCTYPE html> <html lang=&qu ...
- CSRF之Ajax请求
A:Ajax提交数据是,携带的CSRF在data中: <form method="POST" action="/csrf.html"> {% csr ...
- 杭电 1009 FatMouse' Trade (贪心)
Problem Description FatMouse prepared M pounds of cat food, ready to trade with the cats guarding th ...
- 【ZOJ - 3780】 Paint the Grid Again (拓扑排序)
Leo has a grid with N × N cells. He wants to paint each cell with a specific color (either black or ...
- 笔记——python风格规范
分号 不要在行尾加分号, 也不要用分号将两条命令放在同一行. 行长度 每行不超过80个字符 例外: 长的导入模块语句 注释里的URL 不要使用反斜杠连接行. Python会将 圆括号, 中括号和花括号 ...
- 表情符号Emoji的正则表达式
/** * 判断字符串包含表情 * @param value * @return */ public static boolean containsEmoji(String value){ boole ...
- C#上位机开发(一)—— 了解上位机
在单片机项目开发中,上位机也是一个很重要的部分,主要用于数据显示(波形.温度等).用户控制(LED,继电器等),下位机(单片机)与 上位机之间要进行数据通信的两种方式都是基于串口的: USB转串口 — ...