拓展欧几里得:

当 gcd ( a , b )= d 时,求绝对值和最小的 x , y 使得 x * a + y * b = d ;

d = gcd ( a , b ) = gcd ( b , a mod b );

设:

x1 * a + y1 * b = d ;        ①

x2 * b + y2 * ( a mod b ) = d ;   ②

因为 a mod b = a - ( a / b )* b;  ③(除法为整除)

将③代入①整理得:

y2 * a + ( x2 - ( a / b ) * y2 ) * b = d; ④

由①和④整理得:

x1 = y2 ;

y1 = x2 - ( a / b ) * y2;

将此结论代入递归函数既得。

#include<stdio.h>
#define ll long long void gcd(ll a,ll b,ll& d,ll& x,ll& y){
if(!b){d=a;x=;y=;}
else {gcd(b,a%b,d,y,x);y-=x*(a/b);}
} int main(){
ll a,b,d,x,y;
while(scanf("%lld%lld",&a,&b)!=EOF){
gcd(a,b,d,x,y);
printf("%lld*%lld+%lld*%lld=%lld\n",a,x,b,y,d);
}
return ;
}

拓展欧几里得求逆元:

当 a 与 b 互素时有 gcd ( a , b ) = 1 ;

即得: a * x + b * y = 1;

a * x ≡ 1 ( mod b );

由于 a 与 b 互素,同余式两边可以同除 a ,得:

1 * x ≡ 1 / a (mod b);

因此 x 是 a mod b 的逆元;

#include<stdio.h>
#define ll long long ll gcd(ll a,ll b,ll &d,ll& x,ll& y){
if(!b){
d=a;
x=;
y=;
return x;
}
else{
gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
return x;
} int main(){
ll a,b,d,x,y;
while(scanf("%lld%lld",&a,&b)!=EOF){
x=gcd(a,b,d,x,y);
printf("a:%lld->x:%lld\n",a,x);
}
return ;
}

MOD为素数时可以用下面2种方法求逆元

void get_inv(){
inv[]=;
for(int i=;i<mod+;i++)
inv[i]=inv[mod%i]*(mod-mod/i)%mod;
}

乘法逆元

费马小定理:当MOD是素数时,a^(MOD-1)≡1(mod MOD)。(费马小定理是欧拉定理的特殊情况)

那么逆元x=a^(MOD-2)%MOD。可以用快速幂直接求出。

Pow(a,MOD-,MOD)%MOD

http://www.cnblogs.com/pk28/p/5718855.html

扩展欧几里得模板&逆元求法的更多相关文章

  1. [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)

    最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...

  2. hdu_1576A/B(扩展欧几里得求逆元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others)    Me ...

  3. poj 1061 青蛙的约会 (扩展欧几里得模板)

    青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...

  4. Uva12169 扩展欧几里得模板

    Uva12169(扩展欧几里得) 题意: 已知 $x_i=(a*x_{i-1}+b) mod 10001$,且告诉你 $x_1,x_3.........x_{2t-1}$, 让你求出其偶数列 解法: ...

  5. 洛谷——P2054 [AHOI2005]洗牌(扩展欧几里得,逆元)

    P2054 [AHOI2005]洗牌 扩展欧拉定理求逆元 $1 2 3 4 5 6$$4 1 5 2 6 3$$2 4 6 1 3 5$$1 2 3 4 5 6$ 手推一下样例,你就会发现是有规律的: ...

  6. poj 2115 C Looooops(推公式+扩展欧几里得模板)

    Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...

  7. hdu 1576 A/B 【扩展欧几里得】【逆元】

    <题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...

  8. 51nod1256 乘法逆元【扩展欧几里得】

    给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的. Input 输入2个数M, N中间用 ...

  9. POJ 1061 青蛙的约会 扩展欧几里得

    扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...

随机推荐

  1. zabbix源码安装后,设置为服务启动和关闭

    zabbix源码安装,使用service启动与关闭服务 1. zabbix客户端的系统服务脚本 1.1 拷贝启动脚本 zabbix的源码提供了系统服务脚本,在/usr/local/src/zabbix ...

  2. JSON对象与JSON字符串之间的转换

    JSON引用包:import net.sf.json 1.JSON字符串转JSON对象(例子中的AgencyExpand是java对象) JSONObject  json = JSONObject.f ...

  3. 集训第六周 数学概念与方法 J题 数论,质因数分解

    Description Tomorrow is contest day, Are you all ready? We have been training for 45 days, and all g ...

  4. Tomcat处理HTTP请求原理

    一.Tomcat是什么? Tomcat是一个Web应用服务器,同时也是一个Servlet/JSP容器.Tomcat作为Servlet容器,负责处理客户端请求,把请求传送给Servlet,并将Servl ...

  5. Webdriver测试脚本1(打开网页并打印标题)

    案例: 启动火狐浏览器 首页打开博客园页面,打印网页标题,等待3秒 打开百度首页,打印网页标题,再等待2秒 关闭浏览器 from selenium import webdriver from time ...

  6. 微信开放平台PC端扫码登录功能个人总结

    最近公司给我安排一个微信登录的功能,需求是这样的: 1.登录授权 点击二维码图标后,登录界面切换为如下样式(二维码),微信扫描二维码并授权,即可成功登录:    若当前账号未绑定微信账号,扫描后提示“ ...

  7. 2018/3/3 解析ThreadLocal源码

    今天听到一个老哥说道ThreadLocal在源码设计上面的一些好处,于是决定把ThreadLocal源码彻底分析一下. 首先,我们来看下set方法 可以看到,这个方法里,先获得了当前线程,之后将当前线 ...

  8. mysql用户自定义变量

    可以先在用户变量中保存值然后在以后引用它:这样可以将值从一个语句传递到另一个语句.用户变量与连接有关.也就是说,一个客户端定义的变量不能被其它客户端看到或使用.当客户端退出时,该客户端连接的所有变量将 ...

  9. struts面试题及答案【重要】

    1. 简述 Struts2 的工作流程: ①. 请求发送给 StrutsPrepareAndExecuteFilter ②. StrutsPrepareAndExecuteFilter 判定该请求是否 ...

  10. javaweb开发页面数字过长显示科学计数法的问题

    1. 检查该字段是否为double类型,如果是,请改成BigDecimal 2.如果是导出excel里面为科学计数法,原页面正常,是因为excel设置的原因,请参考https://jingyan.ba ...