题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1995

Problem Description

用1,2,...,n表示n个盘子,称为1号盘,2号盘,...。号数大盘子就大。经典的汉诺塔问
题经常作为一个递归的经典例题存在。可能有人并不知道汉诺塔问题的典故。汉诺塔来源于
印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小
顺序摞着64片黄金圆盘。上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱
子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一回只能移动一个圆盘。我们
知道最少需要移动2^64-1次.在移动过程中发现,有的圆盘移动次数多,有的少 。 告之盘
子总数和盘号,计算该盘子的移动次数.

Input

包含多组数据,首先输入T,表示有T组数据.每个数据一行,是盘子的数目N(1<=N<=60)和盘
号k(1<=k<=N)。

Output

对于每组数据,输出一个数,到达目标时k号盘需要的最少移动数。

Sample Input

2
60 1
3 1

Sample Output

576460752303423488
4

解题思路:找规律!

当n=1时,1号盘子移动1次;

当n=2时,1号盘子移动2次;

     2号盘子移动1次;

当n=3时,1号盘子移动4次;--->2(3-1)

     2号盘子移动2次;--->2(3-2)

     3号盘子移动1次;--->2(3-3)

猜想:移动i-1号盘子的次数是移动i号盘子次数的2倍。(实际上这个规律就是正确的)。

因此,n个盘子第k号盘子需要的最少移动次数为2(n-k)次。

AC代码:

 #include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int main()
{
int t,n,k;
LL a[]={};
for(int i=;i<;i++)
a[i]=*a[i-];
while(cin>>t){
while(t--){
cin>>n>>k;
cout<<a[n-k]<<endl;
}
}
return ;
}

题解报告:hdu1995汉诺塔V(递推dp)的更多相关文章

  1. 汉诺塔III 递推题

    题目描述: 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动 ...

  2. 汉诺塔VII(递推,模拟)

    汉诺塔VII Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  3. hdu1995 汉诺塔V

    可以直接把前K-1个罗盘全部忽略了,因为移动前K-1个罗盘不会影响第K个. 也就是相当于只移动剩下的n-k-1个罗盘,当只移动第k个罗盘时,f(k)=1;当要哟东第k个和第k+1个时,就必须先把第k个 ...

  4. HDU 2077 汉诺塔IV (递推)

    题意:... 析:由于能最后一个是特殊的,所以前n-1个都是不变的,只是减少了最后一个盘子的次数,所以根据上一个题的结论 答案就是dp[n-1] + 2. 上一题链接:http://www.cnblo ...

  5. HDU 2064 汉诺塔III (递推)

    题意:.. 析:dp[i] 表示把 i 个盘子搬到第 3 个柱子上最少步数,那么产生先把 i-1 个盘子搬到 第3个上,再把第 i 个搬到 第 2 个上,然后再把 i-1 个盘子, 从第3个柱子搬到第 ...

  6. 汉诺塔III 汉诺塔IV 汉诺塔V (规律)

    汉诺塔III Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  7. HDUOJ---(1995)汉诺塔V

    汉诺塔V Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  8. 汉诺塔系列问题: 汉诺塔II、汉诺塔III、汉诺塔IV、汉诺塔V、汉诺塔VI

    汉诺塔 汉诺塔II hdu1207: 先说汉若塔I(经典汉若塔问题),有三塔.A塔从小到大从上至下放有N个盘子.如今要搬到目标C上. 规则小的必需放在大的上面,每次搬一个.求最小步数. 这个问题简单, ...

  9. HDOJ 1995 汉诺塔V

    Problem Description 用1,2,-,n表示n个盘子,称为1号盘,2号盘,-.号数大盘子就大.经典的汉诺塔问 题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔 ...

随机推荐

  1. 如何利用Fluxion诱惑目标用户获取WPA密码

      前言 由于ISP替代了易受攻击的路由器,供渗透测试人员选择的诸如Reaver这样的工具越来越少,对于特定的目标,哪些工具有用与否能够确定的也很少.而如果采用暴力破解WPA密码,可能会需要大量的时间 ...

  2. EJB学习(三)——java.lang.ClassCastException: com.sun.proxy.$Proxy2 cannot be cast to..

    在上一篇博客介绍了怎样使用使用Eclipse+JBOSS创建第一个EJB项目,在这期间就遇到一个错误: Exception in thread "main" java.lang.C ...

  3. AsyncSocket中tag參数的用处

    tag參数是为了在回调方法中匹配发起调用的方法的,不会加在数据传输中. 调用write方法,等待接收消息.收到消息后,会回调didReadData的delegate方法, delegate方法中的ta ...

  4. Memcache应用场景介绍

    面临的问题 对于高并发高訪问的Web应用程序来说,数据库存取瓶颈一直是个令人头疼的问题.特别当你的程序架构还是建立在单数据库模式,而一个数据池连接数峰 值已经达到500的时候,那你的程序执行离崩溃的边 ...

  5. robotframework接口自动化

    robot framework框架在测试接口上比soapUI好用的多,在此介绍下get方法的HTTP接口,其实这个接口也是把POST数据作为参数进行get请求,使用post 方法也是一样,一共6步就可 ...

  6. The sandbox is not sync with the Podfile.lock

    github下载的Demo,很多时候使用到CocoaPods,有的时候因为依赖关系或者版本问题不能编译运行. 出现 以下错误 The sandbox is not sync with the Podf ...

  7. mysql中“Table ‘’ is read only”的解决办法

    之前是在linux下面直接Copy的data下面整个数据库文件夹,在phpMyAdmin里面重新赋予新用户相应权限后,drupal成功连接上数据库.但出现N多行错误提示,都是跟Cache相关的表是‘R ...

  8. Angular45

    Angular 4 Tutorial for Beginners: Learn Angular 4 from Scratch https://www.youtube.com/watch?v=k5E2A ...

  9. mount: wrong fs type

    # mount -t nfs -o nolock 192.168.1.84:/home/jason/filesys /mnt/nfsmount: wrong fs type, bad option, ...

  10. Oracle学习(18)【DBA向】:分布式数据库

    分布式数据库 什么是分布数据库? l数据物理上被存放在网络的多个节点上,逻辑上是一个总体. 分布式数据库的独立性 l分布数据的独立性指用户不必关心数据怎样切割和存储,仅仅需关心他须要什么数据. Ora ...