题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1995

Problem Description

用1,2,...,n表示n个盘子,称为1号盘,2号盘,...。号数大盘子就大。经典的汉诺塔问
题经常作为一个递归的经典例题存在。可能有人并不知道汉诺塔问题的典故。汉诺塔来源于
印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小
顺序摞着64片黄金圆盘。上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱
子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一回只能移动一个圆盘。我们
知道最少需要移动2^64-1次.在移动过程中发现,有的圆盘移动次数多,有的少 。 告之盘
子总数和盘号,计算该盘子的移动次数.

Input

包含多组数据,首先输入T,表示有T组数据.每个数据一行,是盘子的数目N(1<=N<=60)和盘
号k(1<=k<=N)。

Output

对于每组数据,输出一个数,到达目标时k号盘需要的最少移动数。

Sample Input

2
60 1
3 1

Sample Output

576460752303423488
4

解题思路:找规律!

当n=1时,1号盘子移动1次;

当n=2时,1号盘子移动2次;

     2号盘子移动1次;

当n=3时,1号盘子移动4次;--->2(3-1)

     2号盘子移动2次;--->2(3-2)

     3号盘子移动1次;--->2(3-3)

猜想:移动i-1号盘子的次数是移动i号盘子次数的2倍。(实际上这个规律就是正确的)。

因此,n个盘子第k号盘子需要的最少移动次数为2(n-k)次。

AC代码:

 #include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int main()
{
int t,n,k;
LL a[]={};
for(int i=;i<;i++)
a[i]=*a[i-];
while(cin>>t){
while(t--){
cin>>n>>k;
cout<<a[n-k]<<endl;
}
}
return ;
}

题解报告:hdu1995汉诺塔V(递推dp)的更多相关文章

  1. 汉诺塔III 递推题

    题目描述: 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动 ...

  2. 汉诺塔VII(递推,模拟)

    汉诺塔VII Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  3. hdu1995 汉诺塔V

    可以直接把前K-1个罗盘全部忽略了,因为移动前K-1个罗盘不会影响第K个. 也就是相当于只移动剩下的n-k-1个罗盘,当只移动第k个罗盘时,f(k)=1;当要哟东第k个和第k+1个时,就必须先把第k个 ...

  4. HDU 2077 汉诺塔IV (递推)

    题意:... 析:由于能最后一个是特殊的,所以前n-1个都是不变的,只是减少了最后一个盘子的次数,所以根据上一个题的结论 答案就是dp[n-1] + 2. 上一题链接:http://www.cnblo ...

  5. HDU 2064 汉诺塔III (递推)

    题意:.. 析:dp[i] 表示把 i 个盘子搬到第 3 个柱子上最少步数,那么产生先把 i-1 个盘子搬到 第3个上,再把第 i 个搬到 第 2 个上,然后再把 i-1 个盘子, 从第3个柱子搬到第 ...

  6. 汉诺塔III 汉诺塔IV 汉诺塔V (规律)

    汉诺塔III Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  7. HDUOJ---(1995)汉诺塔V

    汉诺塔V Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  8. 汉诺塔系列问题: 汉诺塔II、汉诺塔III、汉诺塔IV、汉诺塔V、汉诺塔VI

    汉诺塔 汉诺塔II hdu1207: 先说汉若塔I(经典汉若塔问题),有三塔.A塔从小到大从上至下放有N个盘子.如今要搬到目标C上. 规则小的必需放在大的上面,每次搬一个.求最小步数. 这个问题简单, ...

  9. HDOJ 1995 汉诺塔V

    Problem Description 用1,2,-,n表示n个盘子,称为1号盘,2号盘,-.号数大盘子就大.经典的汉诺塔问 题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔 ...

随机推荐

  1. DataGridView依据下拉列表显示数据

    我们都知道,DataGridView能够直接绑定数据源.显示数据库中的数据.可是我想做的是能够对他进行条件查询,依据用户级别选择不同级别的记录. 以上这个控件就是DataGridView控件,能够用它 ...

  2. Android消息机制1-Handler(Java层)(转)

    转自:http://gityuan.com/2015/12/26/handler-message-framework/ 相关源码 framework/base/core/java/andorid/os ...

  3. 移动APP怎样保存用户password

    <span style="font-size:14px;">为了更好的用户体验,移动APPclient一般都会将用户信息进行保存以便兴许能够自己主动登录.</sp ...

  4. udhcp源码详解(三) 下 之配置信息的读取

    上节讲解了read_config函数,读取配置信息到server_config的相应成员变量里,但read_config函数只负责把配置信息重文件里读出来,具体怎么把信息填写到指定的地址内,是调用ke ...

  5. Matplotlib绘图基础

    import matplotlib.pyplot as plt import numpy as np #绘图流程 x=np.linspace(-1,1,100) y=x**2 plt.plot(x,y ...

  6. Windows下编译DCMTK

    原帖地址:http://www.cnblogs.com/yinxufeng/p/3636241b7084b0340cc56fd37f9e2fd8.html 下载源码生成VS项目工程编译源码 下载源码 ...

  7. 【视频】零基础学Android开发:蓝牙聊天室APP(三)

    零基础学Android开发:蓝牙聊天室APP第三讲 3.1 ImageView.ImageButton控件具体解释 3.2 GridView控件具体解释 3.3 SimpleAdapter适配器具体解 ...

  8. MySQL 高可用架构在业务层面细化分析研究

    相对于传统行业的相对服务时间9x9x6或者9x12x5,由于互联网电子商务以及互联网游戏的实时性,所以服务要求7*24小时,业务架构无论是应用还是数据库,都须要容灾互备.在mysql的体系中,最好通过 ...

  9. jquery源码学习笔记一:总体结构

    练武不练功,到老一场空.计算机也一样. 计算机的功,就是原理.如果程序员只会使用各种函数,各种框架,而不知其原理,顶多熟练工人而已.知其然,更要知其所以然. jquery我们用得很爽,但它究竟咋实现的 ...

  10. Intellig Idea2017新建Web项目(tu'wen)

    1.新建新工程项目 2.选择Java 和JDK版本 3.下一步Next(默认不勾选) 4.设置Project Name ,点击More Setting图标可以折叠.展开  然后Finish 我们可以看 ...