题目大意:

  f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d),已给递推公式,求f(n)的大小。

解题思路:

  n很大,所以我们就要构造矩阵,运用矩阵快速幂来求解。//题目描述上口口声声说int范围内,但是大家一定不要天真!!!!!!

 #include <iostream>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstring>
using namespace std; #define LL long long
const int maxn = ;
LL d, m;
struct mat
{
LL p[maxn][maxn];
}; mat mul (mat a, mat b);
mat pow (LL n, mat a, mat b); int main ()
{
LL n;
mat a, b; while (scanf ("%lld %lld %lld", &d, &n, &m), n+m+d)
{
memset (a.p, , sizeof(a.p));
memset (b.p, , sizeof(b.p)); for (int i=; i<d; i++)//构造矩阵
{
scanf ("%lld", &a.p[i][]);
a.p[i][] %= m;
a.p[i][i+] = ;
}
for (int i=; i<d; i++)//这个矩阵要反过来输入!!!!!!
{
scanf ("%lld", &b.p[][d-i-]);
b.p[][i] %= m;
} if (d < n)
{
b = pow (n-d, a, b);
printf ("%lld\n", b.p[][]);
}
else
printf ("%lld\n", b.p[][d-n]);
}
return ;
} mat mul (mat a, mat b)
{
mat c;
memset (c.p, , sizeof(c.p));
for (int i=; i<d; i++)
for (int j=; j<d; j++)
{
for (int k=; k<d; k++)
c.p[i][j] = (c.p[i][j] + a.p[i][k] * b.p[k][j]) % m;
}
return c;
}
mat pow (LL n, mat a, mat b)
{
while (n)
{
if (n % )
b = mul (b, a);
a = mul (a, a);
n /= ;
}
return b;
}

UVA Recurrences 矩阵相乘+快速幂的更多相关文章

  1. Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)

    Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...

  2. 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解

    矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...

  3. Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)

    /* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...

  4. 矩阵乘法快速幂 codevs 1574 广义斐波那契数列

    codevs 1574 广义斐波那契数列  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond   题目描述 Description 广义的斐波那契数列是指形如 ...

  5. 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2

    1732 Fibonacci数列 2  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 在“ ...

  6. hdu 5607 graph (矩阵乘法快速幂)

    考虑一个经典的问题: 询问从某个点出发,走 k 步到达其它各点的方案数? 这个问题可以转化为矩阵相乘,所以矩阵快速幂即可解决. 本题思路: 矩阵经典问题:求从i点走k步后到达j点的方案数(mod p) ...

  7. 矩阵二分快速幂优化dp动态规划

    矩阵快速幂代码: int n; // 所有矩阵都是 n * n 的矩阵 struct matrix { int a[100][100]; }; matrix matrix_mul(matrix A, ...

  8. 【BZOJ-1009】GT考试 KMP+DP+矩阵乘法+快速幂

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2745  Solved: 1694[Submit][Statu ...

  9. BZOJ-1875 HH去散步 DP+矩阵乘法快速幂

    1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...

随机推荐

  1. jq自定义裁剪,代码超级简单,易修改

    1.自定义宽高效果 1.html 代码  index.html <!DOCTYPE html> <html lang="en"> <head> ...

  2. Java泛型的主要用途

    1.泛型的主要用途就是代替各种类型,作为一个笼统的整体类型代替,也就是代替参数,不论是传入参数还是返回参数.都可以用泛型来代替. 如dao操作类的增删改查操作,因为传入参数的类型不同,但基本都是相同接 ...

  3. sys.argv的妙用:python命令行参数列表的修改、增加、删除

    是否妙用取决于你怎么用 1.sys.argv是用来获取命令行参数的方法,本身是一个list.你搜其实用方法,这方面的介绍最多,这里不赘述 2.那么问题是:sys.argv可以赋值吗?可以扩充吗?可以修 ...

  4. kvm虚拟化学习笔记(二)之linux kvm虚拟机安装

    KVM虚拟化学习笔记系列文章列表----------------------------------------kvm虚拟化学习笔记(一)之kvm虚拟化环境安装http://koumm.blog.51 ...

  5. web.xml文件中各个配置的说明

    <?xml version="1.0" encoding="UTF-8"?><web-app xmlns:xsi="http://w ...

  6. properties文件读取配置信息

    public static void main(String[] args){ String printerName=""; String path = "C:\\Bar ...

  7. Eclipse项目遇到问题汇总

    1:gc overhead limit exceeded     原因:这是由于项目中eclipse内存分配不足导致     修改:修改eclipse.ini文件     修改如下:          ...

  8. c语言学习-指针探究

    1:指针定义格式:格式:变量类型 *变量名用途:指针变量用于储存地址(only),也就是根据地址值,访问对应的存储空间. 注意.int *p 只能指向int类型的数据: 例: int a = 20; ...

  9. 2016/4/26 sublime text 2 版本 遇到的问题及解决方法

    1.汉化:下载汉化包 .打开程序Preference下的浏览包文件夹.将解压的程序包粘贴进包文件夹2.破解:标题栏上面有带(unregistered)表示还没有注册: 打开HELP→Enter lic ...

  10. vsftp 777权限

    1. setsebool -P ftpd_disable_trans 1 2. service vsftpd restart