UVA Recurrences 矩阵相乘+快速幂
题目大意:
f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d),已给递推公式,求f(n)的大小。
解题思路:
n很大,所以我们就要构造矩阵,运用矩阵快速幂来求解。//题目描述上口口声声说int范围内,但是大家一定不要天真!!!!!!
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstring>
using namespace std; #define LL long long
const int maxn = ;
LL d, m;
struct mat
{
LL p[maxn][maxn];
}; mat mul (mat a, mat b);
mat pow (LL n, mat a, mat b); int main ()
{
LL n;
mat a, b; while (scanf ("%lld %lld %lld", &d, &n, &m), n+m+d)
{
memset (a.p, , sizeof(a.p));
memset (b.p, , sizeof(b.p)); for (int i=; i<d; i++)//构造矩阵
{
scanf ("%lld", &a.p[i][]);
a.p[i][] %= m;
a.p[i][i+] = ;
}
for (int i=; i<d; i++)//这个矩阵要反过来输入!!!!!!
{
scanf ("%lld", &b.p[][d-i-]);
b.p[][i] %= m;
} if (d < n)
{
b = pow (n-d, a, b);
printf ("%lld\n", b.p[][]);
}
else
printf ("%lld\n", b.p[][d-n]);
}
return ;
} mat mul (mat a, mat b)
{
mat c;
memset (c.p, , sizeof(c.p));
for (int i=; i<d; i++)
for (int j=; j<d; j++)
{
for (int k=; k<d; k++)
c.p[i][j] = (c.p[i][j] + a.p[i][k] * b.p[k][j]) % m;
}
return c;
}
mat pow (LL n, mat a, mat b)
{
while (n)
{
if (n % )
b = mul (b, a);
a = mul (a, a);
n /= ;
}
return b;
}
UVA Recurrences 矩阵相乘+快速幂的更多相关文章
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...
- Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)
/* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...
- 矩阵乘法快速幂 codevs 1574 广义斐波那契数列
codevs 1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如 ...
- 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2
1732 Fibonacci数列 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 在“ ...
- hdu 5607 graph (矩阵乘法快速幂)
考虑一个经典的问题: 询问从某个点出发,走 k 步到达其它各点的方案数? 这个问题可以转化为矩阵相乘,所以矩阵快速幂即可解决. 本题思路: 矩阵经典问题:求从i点走k步后到达j点的方案数(mod p) ...
- 矩阵二分快速幂优化dp动态规划
矩阵快速幂代码: int n; // 所有矩阵都是 n * n 的矩阵 struct matrix { int a[100][100]; }; matrix matrix_mul(matrix A, ...
- 【BZOJ-1009】GT考试 KMP+DP+矩阵乘法+快速幂
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2745 Solved: 1694[Submit][Statu ...
- BZOJ-1875 HH去散步 DP+矩阵乘法快速幂
1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...
随机推荐
- SqlSugar最容易使用的ORM
SqlSugar官网
- ASP.NET Core 奇淫技巧之动态WebApi
一.前言 接触到动态WebApi(Dynamic Web API)这个词的已有几年,是从ABP框架里面接触到的,当时便对ABP的这个技术很好奇,后面分析了一波,也尝试过从ABP剥离一个出来作为独立组件 ...
- 限制input的输入类型
1.只能输入和粘贴汉字 <input onkeyup="value=value.replace(/[^\u4E00-\u9FA5]/g,'')" onbeforepaste= ...
- 全文搜索引擎 Elasticsearch 安装
全文搜索引擎 Elasticsearch 安装 学习了:http://www.ruanyifeng.com/blog/2017/08/elasticsearch.html 拼音:https://www ...
- 重载和重写在jvm运行中的区别(一)
1.重载(overload)方法 对重载方法的调用主要看静态类型,静态类型是什么类型,就调用什么类型的参数方法. 2.重写(override)方法 对重写方法的调用主要看实际类型.实际类型如果实现了该 ...
- Java注释中的@deprecated与源代码中的@Deprecated
用 @Deprecated注释的程序元素,不鼓励程序员使用这样的元素,通常是因为它很危险或存在更好的选择.在使用不被赞成的程序元素或在不被赞成的代码中执行重写时,编译器会发出警告. 其次,请注意标题, ...
- unix时间戳(unix timestamp)与北京时间的互转方法
1.在linux bash下北京时间与unix时间戳互转: 获取unix timestamp: 命令:date "+%s" 输出:1372654714 获取北京时间: 命令:dat ...
- LoadRunner关联需要转义的常见字符
转义字符总结 在做手动关联时,取边界值的时候,会经常用到转义字符,现将转义字符整理如下: \b 退格 \f 换页 \n 换行 \ ...
- 编程题:1. var person = '{name:"Lily",sex:"famale",age:24,country:"US"}';将person转换成JSON对象并便利每个属性值。
/// <summary> /// Json工具类 /// </summary> public class JsonUtility { private static JsonU ...
- qemu所支持的网卡
1 命令 -net nic 创建一个network interface card,即创建一个网卡,默认是e1000网卡. 2 qemu所支持的网卡类型 2.1 rtl8139 Realtek 10/1 ...