题目传送门

题意:给出一些砖头的长宽高,砖头能叠在另一块上要求它的长宽都小于下面的转头的长宽,问叠起来最高能有多高

分析:设一个砖头的长宽高为x, y, z,那么想当于多了x, z, y 和y, x, z的砖头,如果i能叠在j上,那么g[i][j] = true,转换成DAG问题,dp[i]表示第i块叠在最上部最高的高度

收获:转换成经典模型

代码:

/************************************************
* Author :Running_Time
* Created Time :2015-8-28 18:00:01
* File Name :UVA_437.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e2 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
struct Block {
int x, y, z;
}b[N];
bool g[N][N];
int dp[N];
int n; int DFS(int u) {
if (dp[u] != -1) return dp[u];
dp[u] = b[u].z;
for (int i=1; i<=n; ++i) {
if (g[u][i]) {
dp[u] = max (dp[u], DFS (i) + b[u].z);
}
}
return dp[u];
} bool check(int i, int j) {
if (b[i].x < b[j].x && b[i].y < b[j].y) return true;
if (b[i].x < b[j].y && b[i].y < b[j].x) return true;
return false;
} int main(void) {
int cas = 0;
while (scanf ("%d", &n) == 1) {
if (n == 0) break;
for (int i=1; i<=n; ++i) {
scanf ("%d%d%d", &b[i].x, &b[i].y, &b[i].z);
b[n+i].x = b[i].x, b[n+i].y = b[i].z, b[n+i].z = b[i].y;
b[2*n+i].x = b[i].y, b[2*n+i].y = b[i].z, b[2*n+i].z = b[i].x;
}
memset (g, false, sizeof (g));
n *= 3;
for (int i=1; i<=n; ++i) {
for (int j=i+1; j<=n; ++j) {
if (check (i, j)) g[i][j] = true;
if (check (j, i)) g[j][i] = true;
}
}
memset (dp, -1, sizeof (dp));
int ans = 0;
for (int i=1; i<=n; ++i) {
ans = max (ans, DFS (i));
}
printf ("Case %d: maximum height = %d\n", ++cas, ans);
} return 0;
}

  

DP(DAG) UVA 437 The Tower of Babylon的更多相关文章

  1. UVa 437 The Tower of Babylon(DP 最长条件子序列)

     题意  给你n种长方体  每种都有无穷个  当一个长方体的长和宽都小于还有一个时  这个长方体能够放在还有一个上面  要求输出这样累积起来的最大高度 由于每一个长方体都有3种放法  比較不好控制 ...

  2. UVa 437 The Tower of Babylon(经典动态规划)

    传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...

  3. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  4. UVA 437 The Tower of Babylon(DAG上的动态规划)

    题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...

  5. UVA 437 "The Tower of Babylon" (DAG上的动态规划)

    传送门 题意 有 n 种立方体,每种都有无穷多个. 要求选一些立方体摞成一根尽量高的柱子(在摞的时候可以自行选择哪一条边作为高): 立方体 a 可以放在立方体 b 上方的前提条件是立方体 a 的底面长 ...

  6. UVA - 437 The Tower of Babylon(dp-最长递增子序列)

    每一个长方形都有六种放置形态,其实可以是三种,但是判断有点麻烦直接用六种了,然后按照底面积给这些形态排序,排序后就完全变成了LIS的问题.代码如下: #include<iostream> ...

  7. UVA 437 The Tower of Babylon巴比伦塔

    题意:有n(n≤30)种立方体,每种有无穷多个.要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽. 评测地址:http:/ ...

  8. UVA 427 The Tower of Babylon 巴比伦塔(dp)

    据说是DAG的dp,可用spfa来做,松弛操作改成变长.注意状态的表示. 影响决策的只有顶部的尺寸,因为尺寸可能很大,所以用立方体的编号和高的编号来表示,然后向尺寸更小的转移就行了. #include ...

  9. UVA 437 十九 The Tower of Babylon

    The Tower of Babylon Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Subm ...

随机推荐

  1. Hexo搭建个人blog

    Hexo搭建 现在只想说心累... 前几天看了几个牛人的blog,感觉他们的风格很舒服,然后就发现了Hexo这个好东西!激动的想马上自己也弄一个,昨天晚上开始看资料特别是:潘柏信写了两篇 HEXO搭建 ...

  2. 2003-07-16T01:24:32Z这是什么时间格式

    这是标准的XML Schema的"日期型数据格式”. T是代表后面跟着“时间”.Z代表0时区,或者叫UTC统一时间. 世界的每个地区都有自己的本地时间,在Internet及无线电通信时,时间 ...

  3. 转: 将Eclipse代码导入到AndroidStudio的两种方式

    评注: 讲解的非常之详细 转自:    http://www.cnblogs.com/ct2011/p/4183553.html 说到使用AndroidStudio,除了新建的项目,我们都会面临的问题 ...

  4. Deepin-安装QQ音乐(Windows程序)

    打开命令行,输入: sudo apt-get install wine 安装完成后,下载QQ音乐的安装包 然后安装 示例:wine xx.exe 实例:wine QQMusic.exe 安装完成,启动 ...

  5. JavaScript语句-流程控制语句

    JavaScript定义了一组语句,语句通常用于执行一定的任务.语句可以很简单,也可以很复杂. 选择结构,可以在程序中创建交叉结构来指定程序流的可能方向.JavaScript中有四种选择结构: 1.单 ...

  6. 用bis和bic实现位级操作

    20世纪70年代末至80年代末,DigitalEquipment的VAX计算机是一种非常流行的机型.它没有布尔运算AND和OR指令,仅仅有bis(位设置)和bic(位清除)这两种指令.两种指令的输入都 ...

  7. IDEA 使用方法快捷键

    Ctrl+Shift + Enter,语句完成“!”,否定完成,输入表达式时按 “!”键Ctrl+E,最近的文件Ctrl+Shift+E,最近更改的文件Shift+Click,可以关闭文件Ctrl+[ ...

  8. spring boot自定义properity

    1.spring boot使用application.properties默认了很多配置. 但有时需要自定义配置.若在application.properties添加属性: app.name=fish ...

  9. UVA10600 ACM Contest and Blackout —— 次小生成树

    题目链接:https://vjudge.net/problem/UVA-10600 In order to prepare the “The First National ACM School Con ...

  10. POJ1177 Picture —— 求矩形并的周长 线段树 + 扫描线 + 离散化

    题目链接:https://vjudge.net/problem/POJ-1177 A number of rectangular posters, photographs and other pict ...