用Keras搭建神经网络 简单模版(六)——Autoencoder 自编码
import numpy as np
np.random.seed(1337) from keras.datasets import mnist
from keras.models import Model
from keras.layers import Dense, Input
import matplotlib.pyplot as plt (x_train,y_train),(x_test,y_test) = mnist.load_data() x_train = x_train.astype('float32') / 255.-0.5 #(-0.5,0.5)的区间
x_test = x_test.astype('float32') / 255.-0.5
x_train = x_train.reshape((x_train.shape[0],-1))
x_test = x_test.reshape((x_test.shape[0],-1))
print(x_train.shape)
print(x_test.shape) # 最终压缩成2个
encoding_dim = 2 # 输入
input_img = Input(shape=(784,)) # encoder layers
encoded = Dense(128, activation='relu')(input_img)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(10, activation='relu')(encoded)
encoder_output = Dense(encoding_dim,)(encoded) # decoder layers
decoded = Dense(10,activation='relu')(encoder_output)
decoded = Dense(64,activation='relu')(decoded)
decoded = Dense(128,activation='relu')(decoded)
decoded = Dense(784,activation='tanh')(decoded) # 搭建autoencoder模型
autoencoder = Model(input=input_img,output=decoded) # 搭建encoder model for plotting,encoder是autoencoder的一部分
encoder = Model(input=input_img,output=encoder_output) # 编译 autoencoder
autoencoder.compile(optimizer='adam',loss='mse') # 训练
autoencoder.fit(x_train, x_train,
nb_epoch=20,
batch_size=256,
shuffle=True) # plotting
encoded_imgs = encoder.predict(x_test)
plt.scatter(encoded_imgs[:,0], encoded_imgs[:,1], c=y_test)
plt.show()
E:\ProgramData\Anaconda3\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
Using TensorFlow backend.
(60000, 784)
(10000, 784)
D:/我的python/用keras搭建神经网络/Autoencoder 自编码.py:38: UserWarning: Update your `Model` call to the Keras 2 API: `Model(inputs=Tensor("in..., outputs=Tensor("de...)`
autoencoder = Model(input=input_img,output=decoded)
D:/我的python/用keras搭建神经网络/Autoencoder 自编码.py:41: UserWarning: Update your `Model` call to the Keras 2 API: `Model(inputs=Tensor("in..., outputs=Tensor("de...)`
encoder = Model(input=input_img,output=encoder_output)
D:/我的python/用keras搭建神经网络/Autoencoder 自编码.py:50: UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`.
shuffle=True)
Epoch 1/20
60000/60000 [==============================] - 5s 80us/step - loss: 0.0694
Epoch 2/20
60000/60000 [==============================] - 1s 20us/step - loss: 0.0562
Epoch 3/20
60000/60000 [==============================] - 1s 19us/step - loss: 0.0525
Epoch 4/20
60000/60000 [==============================] - 1s 20us/step - loss: 0.0493
Epoch 5/20
60000/60000 [==============================] - 1s 20us/step - loss: 0.0476
Epoch 6/20
60000/60000 [==============================] - 1s 20us/step - loss: 0.0463
Epoch 7/20
60000/60000 [==============================] - 1s 22us/step - loss: 0.0452
Epoch 8/20
60000/60000 [==============================] - 1s 23us/step - loss: 0.0442
Epoch 9/20
60000/60000 [==============================] - 1s 19us/step - loss: 0.0435
Epoch 10/20
60000/60000 [==============================] - 1s 19us/step - loss: 0.0429
Epoch 11/20
60000/60000 [==============================] - 1s 18us/step - loss: 0.0424
Epoch 12/20
60000/60000 [==============================] - 1s 18us/step - loss: 0.0419
Epoch 13/20
60000/60000 [==============================] - 1s 18us/step - loss: 0.0415
Epoch 14/20
60000/60000 [==============================] - 1s 18us/step - loss: 0.0412
Epoch 15/20
60000/60000 [==============================] - 1s 18us/step - loss: 0.0409
Epoch 16/20
60000/60000 [==============================] - 1s 18us/step - loss: 0.0405
Epoch 17/20
60000/60000 [==============================] - 1s 18us/step - loss: 0.0402
Epoch 18/20
60000/60000 [==============================] - 1s 19us/step - loss: 0.0401
Epoch 19/20
60000/60000 [==============================] - 1s 18us/step - loss: 0.0398
Epoch 20/20
60000/60000 [==============================] - 1s 18us/step - loss: 0.0397

用Keras搭建神经网络 简单模版(六)——Autoencoder 自编码的更多相关文章
- 用Keras搭建神经网络 简单模版(二)——Classifier分类(手写数字识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...
- 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...
- 用Keras搭建神经网络 简单模版(一)——Regressor 回归
首先需要下载Keras,可以看到我用的是TensorFlow 的backend 自己构建虚拟数据,x是-1到1之间的数,y为0.5*x+2,可视化出来 # -*- coding: utf-8 -*- ...
- 用Keras搭建神经网络 简单模版(五)——RNN LSTM Regressor 循环神经网络
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) import matplotlib.pyplot as plt from ...
- 用Keras搭建神经网络 简单模版(四)—— RNN Classifier 循环神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) from keras.datasets import mnist fro ...
- keras搭建神经网络快速入门笔记
之前学习了tensorflow2.0的小伙伴可能会遇到一些问题,就是在读论文中的代码和一些实战项目往往使用keras+tensorflow1.0搭建, 所以本次和大家一起分享keras如何搭建神经网络 ...
- 深度学习实践系列(3)- 使用Keras搭建notMNIST的神经网络
前期回顾: 深度学习实践系列(1)- 从零搭建notMNIST逻辑回归模型 深度学习实践系列(2)- 搭建notMNIST的深度神经网络 在第二篇系列中,我们使用了TensorFlow搭建了第一个深度 ...
- 对比学习用 Keras 搭建 CNN RNN 等常用神经网络
Keras 是一个兼容 Theano 和 Tensorflow 的神经网络高级包, 用他来组件一个神经网络更加快速, 几条语句就搞定了. 而且广泛的兼容性能使 Keras 在 Windows 和 Ma ...
- Keras(六)Autoencoder 自编码 原理及实例 Save&reload 模型的保存和提取
Autoencoder 自编码 压缩与解压 原来有时神经网络要接受大量的输入信息, 比如输入信息是高清图片时, 输入信息量可能达到上千万, 让神经网络直接从上千万个信息源中学习是一件很吃力的工作. 所 ...
随机推荐
- ubuntu---记录.简单一句话安装tf
卸载 sudo pip3 uninstall tensorflow sudo pip3 uninstall tensorflow-gpu sudo pip3 uninstall tensorflow- ...
- 使用fiddler进行接口测试
我们来说说如何使用fiddler做接口测试? 测试准备,抓到相应的接口和入参或者找接口文档,我这里就用聚合数据里面的接口做样例, 接口如下: 测试接口:http://japi.juhe.cn/qqev ...
- halcon导出类---HDevWindowStack详解
在HDevelop中编写好的程序在导出时,Halcon会帮我们转换成我们需要的语言,比如C++.例:HDevelop中有如下语句需要导出: dev_close_window() Halcon导出成C+ ...
- Python进阶:都说好用的 Python 命令行库click
click 是一个以尽可能少的代码.以组合的方式创建优美的命令行程序的 Python 包.它有很高的可配置性,同时也能开箱即用. 它旨在让编写命令行工具的过程既快速又有趣,还能防止由于无法实现预期的 ...
- Navicat permium快捷键
Ctrl + F 搜索本页数据 Ctrl + Q 打开查询窗口 Ctrl + / 注释sql语句 Ctrl + Shift + / 解除注释 Ctrl + R 运行查询窗口的sql语句 Ctrl + ...
- Java集合总结(二):Map和Set
集合类的架构图: HashMap 内部维护一个链表数组做哈希表,默认大小为16,最大值可以为2^30,默认负载因子0.75. 可以通过构造方法指定初始大小和负载因子,当键值对个数大于等于临界值thre ...
- 在Android中使用OpenGL ES开发第(四)节:相机预览
笔者之前写了三篇Android中使用OpenGL ES入门级的文章,从OpenGL ES的相关概念出发,分析了利用OpenGL ES实现3D绘图的重要的两个步骤:定义形状和绘制形状,简单的绘制了一个三 ...
- 实战 Prometheus 搭建监控系统
实战 Prometheus 搭建监控系统 Prometheus 是一款基于时序数据库的开源监控告警系统,说起 Prometheus 则不得不提 SoundCloud,这是一个在线音乐分享的平台,类似于 ...
- 内存管理2-set方法的内存管理-程序解析
创建class Book .h 有@ property float price; //@synthesize 自动 ------------ 创建class Student #import &quo ...
- MySQL数据分析-(12)表操作补充:字段属性
大家好,我是jacky朱元禄,很高兴继续跟大家学习MySQL数据分析实战,今天我们分享的主题是表操作补充之字段属性,依照惯例第一部分,jacky先跟大家分享本课时的学习逻辑 (一)学习逻辑 我们说创建 ...