CNN卷积汇总
1,卷积作用:减少参数(卷积核参数共享),卷积过程中不断对上一个输出进行抽象,由局部特征归纳为全局特征(不同卷积层可视化可以观察到这点)
2,卷积核
早期卷积核由人工总结,如图像处理中有:
深度神经网络中,卷积核则由网络训练过程中学习获得。
3, 神经网络中的卷积类型
- Group convolution:分组卷积。对通道channel进行分组后分别卷积。减少参数。
比如输入和输出通道都为64,卷积核大小为3*3,则原始参数量为64*3*3*64=36864,通道分组为8组,每组输入输出都为32,参数量为8*8*3*3*8=4608。为原来的1/8。
- Depthwise convolution:卷积核深度为1,只对相应通道的空间部分卷积
- Pointwise convolution:卷积核大小为1*1,只对通道部分卷积
- Depthwise Separable convolution:上面2者结合即为此。先对每个通道的空间部分卷积,再对各个通道卷积,分离了空间与channel。减少参数。
比如,输入通道为16,输出通道为32,使用卷积核大小3*3,如果直接卷积,则我们需要32个卷积核,每个参数为3*3*16,总参数为32*3*3*16=4608。分开操作时,第一步,我们每个卷积核只一个输入通道进行卷积,即对空间部分卷积,需要16个卷积核,每个3*3*1,共144个参数;第二步,对通道部分卷积,此时不需要对空间卷积了,所以卷积核大小为1*1(即保留原始空间信息),对16个通道卷积,即一个卷积核参数为1*1*16,输出32则用32个卷积核,共16*32=512个参数。总参数656个。参数量为原来的1/7。对于空间和通道较独立的数据,使用此方法不仅效率高,而且效果好。
- Dilated convolution:空洞卷积。解决下采样(pooling)过程中信息丢失问题,实现像素级的语义分割。
如图,卷积核大小不变,但是中间可以留空,这样可以增大卷积核的视野,而无需扩大卷积核大小(增加参数/计算量)。
- 反卷积(转置卷积):反卷积核与元素卷积核的输入输出shape是交换形式,实现还原原始shape的操作。
4,tensorflow实现
常规卷积
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, Name=None)
可以用高级API,这里步长对于样本和通道维度默认设为1了,所以只有2个参数。对于dilation也是如此。同时还有trainable等特性。
tf.layers.Conv2D(
filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format='channels_last',
dilation_rate=(1, 1),
activation=None,
use_bias=True,
kernel_initializer=None,
bias_initializer=<tensorflow.python.ops.init_ops.Zeros object at 0x000001ECFFC4D188>,
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
trainable=True,
name=None,
**kwargs,
)
Depthwise convolution
tf.nn.depthwise_conv2d(input, filter, strides, padding, rate=None, name=None, data_format=None)
Separable convolution
tf.nn.separable_conv2d(input, depthwise_filter, pointwise_filter, strides, padding, rate=None, name=None, data_format=None)
反卷积
tf.nn.conv2d_transpose(value, filter, output_shape, strides, padding="SAME", data_format="NHWC", name=None)
以上参数就不具体说明了,在此只是作个汇总,方便查看。
参考资料
https://www.cnblogs.com/noticeable/p/9197640.html
https://www.cnblogs.com/cvtoEyes/p/8848815.html
CNN卷积汇总的更多相关文章
- Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...
- [转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR
Theano下用CNN(卷积神经网络)做车牌中文字符OCR 原文地址:http://m.blog.csdn.net/article/details?id=50989742 之前时间一直在看 Micha ...
- Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文, ...
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM
http://cs231n.github.io/neural-networks-1 https://arxiv.org/pdf/1603.07285.pdf https://adeshpande3.g ...
- 3. CNN卷积网络-反向更新
1. CNN卷积网络-初识 2. CNN卷积网络-前向传播算法 3. CNN卷积网络-反向更新 1. 前言 如果读者详细的了解了DNN神经网络的反向更新,那对我们今天的学习会有很大的帮助.我们的CNN ...
- 2. CNN卷积网络-前向传播算法
1. CNN卷积网络-初识 2. CNN卷积网络-前向传播算法 3. CNN卷积网络-反向更新 1. 前言 我们已经了解了CNN的结构,CNN主要结构有输入层,一些卷积层和池化层,后面是DNN全连接层 ...
- 1. CNN卷积网络-初识
1. CNN卷积网络-初识 2. CNN卷积网络-前向传播算法 3. CNN卷积网络-反向更新 1. 前言 卷积神经网络是一种特殊的深层的神经网络模型,它的特殊性体现在两个方面, 它的神经元间的连接是 ...
- 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...
随机推荐
- Windows netsh命令的使用
Windows netsh命令 netsh(也被称为网络壳层),是一个存在于自微软 Windows 20000开始的所有Windows NT系列中的命令行工具. netsh允许本地或远程配置网络设备. ...
- 箭头函数中可改变this作用域,回调函数用箭头函数this指向page,自定义事件用箭头函数this指向undefined
1.回调函数中,用箭头函数改变this的作用域 success: (res)=>{ this.setData({ //此时,this指向page页面 ... }) } 2.自定义事件中,如果使用 ...
- 修改mysql5.7数据表字符集编码的命令
查看表中字符集的命令 show variables like '%char%' 更改数据库中数据表的字符集靠谱命令,亲测可行,在workbench和phpmyadmin上都通过 alter table ...
- win7系统扩展双屏幕时,开启两个屏幕下都显示任务栏,第三方插件
Dual Monitor Taskbar 下载软件 下载地址 https://dual-monitor-taskbar.en.softonic.com/ 安装即可
- 解决xshell无法连接virtualbox中的虚拟机(Ubuntu18.04)的问题
遇到这个问题第一反应是是否安装相应的组件: sudo apt-get install openssh-server 开启防火墙端口 firewall-cmd --zone=/tcp --permane ...
- vue整合adminLTE
前端框架AdminLTE 中文教程 如何用vue整合adminlte模板 1.adminlte 下载地址 : https://github.com/almasaeed2010/AdminLTE/rel ...
- 基于libcurl的restfull接口 post posts get gets
头文件 #pragma once #ifndef __HTTP_CURL_H__ #define __HTTP_CURL_H__ #include <string> #include &q ...
- xcode6 如何编译64位iOS应用
原文:http://mobile.51cto.com/hot-412500.htm 随着iPhone5S的推出,大家开始关心5S上所使用的64位CPU A7. 除了关心A7的性能以外,大家还会关心一个 ...
- link和Import区别
本篇文章重点: link引用CSS时,在页面载入时同时加载: import需要页面完全载入后加载: link支持使用javascript控制DOM去改变样式,而Import不支持 下面待我娓娓道来: ...
- Python定时框架 Apscheduler 详解【转】
内容来自网络: https://www.cnblogs.com/luxiaojun/p/6567132.html 在平常的工作中几乎有一半的功能模块都需要定时任务来推动,例如项目中有一个定时统计程序, ...