并不对劲的P5589
题目大意
有\(n\)(\(n\leq 10^9\))个数:\(1,2,...,n\),每次操作是随机取一个没被删除的数\(x\),并删去\(x,x^2,x^3,...\)。
求期望几次删完所有数。
题解
可以把问题转换成:有\(n\)个数,每次操作随机取一个数\(x\),若\(x\)未被标记则标记\(x,x^2,x^3,...\)并删去\(x\),反之则删去\(x\),求期望删多少个未被标记的数。
发现一个数\(x\)被计入答案的充要条件是\(\forall y\in\{1,2,3,...,n\}\)满足\(\exists k,y^k=x\),删除序列中\(y\)在\(x\)之后。
记\(y\)的个数为\(p\),问题变成有\(p+1\)个数的排列,指定的数在第一个的概率。这个问题的答案是\(\frac{1}{p+1}\)。
也就是说,设\(p_i\)表示当\(x=i\)时\(y\)的个数,那么原问题的答案是\(\sum\limits_{i=1}^n \frac{1}{p_i+1}\)。
这个式子看上去只能\(\Theta(n)\)地求。
发现\([2,n]\)中有\(\lfloor \sqrt n \rfloor-1\)个平方数,三次根号\(n\)下取整减1个立方数……,\(p_i\neq 0\)的数的个数很少,这些数可以暴力求。
\(p_i=0\)的数的\(\frac{1}{p_i+1}=1\),可以直接求。
代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define view(u,k) for(int k=fir[u];~k;k=nxt[k])
#define LL long long
#define maxn 1000007
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(int x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
int n,t,mx=1e9,pos[maxn],cnt;
map<int,int>mp;
LL mul(LL x,int y){LL res=1;while(y){if(y&1)res*=x;x*=x,y>>=1;}return res;}
int main()
{
rep(i,2,30)
{
LL now=mul(2,i);int j;
for(j=2;now<=mx;)
{
mp[now]++;
if(mp[now]==1)pos[++cnt]=now;
j++;now=mul(j,i);
}
}
t=read();
while(t--)
{
n=read();
double ans=0.0;int num=0;
rep(i,1,cnt)if(pos[i]<=n)num++,ans+=1.0/((double)(mp[pos[i]]+1));
ans+=(double)(n-num);
printf("%.8lf\n",ans);
}
return 0;
}
一些感想
伟大的ysf口胡的
并不对劲的P5589的更多相关文章
- 并不对劲的BJOI2019
一些感想 现实并非游戏,并不支持反复刷关 猎人和防御工事一起被老山龙摧毁了: 猎人惨死雨中,结云村永无放晴之日: 猎人被狂龙病毒侵蚀,天空山上黑蚀龙泛滥. 好像这才是怪物猎人系列的真实结局呢 day ...
- 并不对劲的uoj276. [清华集训2016]汽水
想要很对劲的讲解,请点击这里 题目大意 有一棵\(n\)(\(n\leq 50000\))个节点的树,有边权 求一条路径使该路径的边权平均值最接近给出的一个数\(k\) 输出边权平均值下取整的整数部分 ...
- 并不对劲的DFT
FFT是一个很多人选择背诵全文的算法. #include<algorithm> #include<cmath> #include<complex> #include ...
- 并不对劲的字符串专题(三):Trie树
据说这些并不对劲的内容是<信息学奥赛一本通提高篇>的配套练习. 并不会讲Trie树. 1.poj1056-> 模板题. 2.bzoj1212-> 设dp[i]表示T长度为i的前 ...
- 并不对劲的字符串专题(二):kmp
据说这些并不对劲的内容是<信息学奥赛一本通提高篇>的配套练习. 先感叹一句<信息学奥赛一本通提高篇>上对kmp的解释和matrix67的博客相似度99%(还抄错了),莫非mat ...
- 并不对劲的bzoj1861: [Zjoi2006]Book 书架
传送门-> 这题的正确做法是splay维护这摞书. 但是并不对劲的人选择了暴力(皮这一下很开心). #include<algorithm> #include<cmath> ...
- 并不对劲的bzoj3932: [CQOI2015]任务查询系统
传送门-> 离线操作听上去很简单,遗憾的是它强制在线. 每个时刻可以看成可持久化线段树中的一个版本,而每一个版本的线段树维护的是值某一段区间且在这个版本对应的时刻出现的数之和. 会发现同一时刻可 ...
- 并不对劲的bzoj1853:[SCOI2010]幸运数字
传送门-> 据说本题的正确读法是[shìng运数字]. 听上去本题很适合暴力,于是并不对劲的人就去写了.其实这题就是一个很普(有)通(趣)暴力+神奇的优化. 首先,会发现幸运数字很少,那么就先搜 ...
- 并不对劲的bzoj4199: [Noi2015]品酒大会
传送门-> 又称普及大会. 这题没什么好说的……后缀自动机裸题……并不对劲的人太菜了,之前照着标程逐行比对才过了这道题,前几天刚刚把这题一遍写对…… 这题的输出和某两点相同后缀的长度有关,那么把 ...
随机推荐
- log4j.properties log4j.xml 路径问题
- SpringMVC支持跨域请求
一.如果项目中使用的SpringMVC4.3.9以下,就需要对该请求配置Filter,设置请求头可支持跨域.使用方法: --spring cloud zuul支持跨域---:https://blog. ...
- C++ STL——输入输出流
[TOC] 注:原创不易,转载请务必注明原作者和出处,感谢支持! 注:内容来自某培训课程,不一定完全正确! 一 缓冲区 (1)标准输入:从键盘输入数据到程序(input) (2)标准输出:程序数据输出 ...
- es6 单例
class Singleton { constructor() { this.conn = this.connect(); } static getInstance() { if (!Singleto ...
- nodejs的事件循环1
JavaScript的学习零散而庞杂,因此很多时候我们学到了一些东西,但是却没办法感受到自己的进步,甚至过了不久,就把学到的东西给忘了.为了解决自己的这个困扰,在学习的过程中,我一直试图在寻找一条核心 ...
- Linux开机启动过程分析
开机过程指的是从打开计算机电源直到LINUX显示用户登录画面的全过程.分析LINUX开机过程也是深入了解LINUX核心工作原理的一个很好的途径. 启动第一步--加载BIOS 当 你打开计算机电源,计算 ...
- React Native pod install报错 `Yoga (= 0.44.3.React)` required by `React/Core (0.44.3)`
使用pod安装,可能会因为Podfile的路径指向错误或者没有路径指向因为报错. 报错截图如下: 这是因为在指定的路径没有寻找到相应的组件.此时就需要修改podfile文件中的路径,由于上方提示没有 ...
- spring-boot集成8:集成shiro,jwt
Shrio是一个轻量级的,基于AOP 和 Servlet 过滤器的安全框架.它提供全面的安全性解决方案,同时在 Web 请求级和方法调用级处理身份确认和授权. JWT(JSON Web Token)是 ...
- 8-1 文本三级剑客之sed
文本三级剑客之sed Stream EDitor, 行编辑器 sed是一种流编辑器,它一次处理一行内容.处理时,把当前处理的行存储在临时缓冲区中,称为"模式空间"(pattern ...
- GIL全局解释器锁,线程池与进程池 同步异步,阻塞与非阻塞,异步回调
GIL全局解释器锁 1.什么是GIL 官方解释:'''In CPython, the global interpreter lock, or GIL, is a mutex that prevents ...