一.threading模块介绍

官网链接:https://docs.python.org/3/library/threading.html?highlight=threading#

1.开启线程的两种方式

#直接调用
import threading
import time
def run(n):
print('task',n)
time.sleep(2) t1 = threading.Thread(target=run,args=('t1',))
t1.start()
#继承式调用
mport threading
import time
class MyThread(threading.Thread):
def __init__(self,n,sleep_time):
super(MyThread, self).__init__()
self.n = n
self.sleep_time = sleep_time def run(self):
print('running task',self.n)
time.sleep(self.sleep_time)
print('task done,',self.n) t1 = MyThread('t1',2)
t1.start()

2.在一个进程下开启多个线程与在一个进程下开启多个子进程的区别

from threading import Thread
from multiprocessing import Process
import os def work():
print('hello') if __name__ == '__main__':
#在主进程下开启线程
t=Thread(target=work)
t.start()
print('主线程/主进程')
'''
打印结果:
hello
主线程/主进程
''' #在主进程下开启子进程
t=Process(target=work)
t.start()
print('主线程/主进程')
'''
打印结果:
主线程/主进程
hello
'''

1.开启速度比较

from threading import Thread
from multiprocessing import Process
import os def work():
print('hello',os.getpid()) if __name__ == '__main__':
#part1:在主进程下开启多个线程,每个线程都跟主进程的pid一样
t1=Thread(target=work)
t2=Thread(target=work)
t1.start()
t2.start()
print('主线程/主进程pid',os.getpid()) #part2:开多个进程,每个进程都有不同的pid
p1=Process(target=work)
p2=Process(target=work)
p1.start()
p2.start()
print('主线程/主进程pid',os.getpid())

2.比较pid

from  threading import Thread
from multiprocessing import Process
import os
def work():
global n
n=0 if __name__ == '__main__':
# n=100
# p=Process(target=work)
# p.start()
# p.join()
# print('主',n) #毫无疑问子进程p已经将自己的全局的n改成了0,但改的仅仅是它自己的,查看父进程的n仍然为100 n=1
t=Thread(target=work)
t.start()
t.join()
print('主',n) #查看结果为0,因为同一进程内的线程之间共享进程内的数据

3.数据是否共享

3.应用

1)将socket通信改写为多线程模式

#_*_coding:utf-8_*_
#!/usr/bin/env python
import multiprocessing
import threading import socket
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.bind(('127.0.0.1',8080))
s.listen(5) def action(conn):
while True:
data=conn.recv(1024)
print(data)
conn.send(data.upper()) if __name__ == '__main__': while True:
conn,addr=s.accept()
p=threading.Thread(target=action,args=(conn,))
p.start()

多线程并发的socket服务端

#_*_coding:utf-8_*_
#!/usr/bin/env python import socket s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect(('127.0.0.1',8080)) while True:
msg=input('>>: ').strip()
if not msg:continue s.send(msg.encode('utf-8'))
data=s.recv(1024)
print(data)

客户端

2)三个任务,一个接收用户输入,一个将用户输入的内容格式化成大写,一个将格式化后的结果存入文件

rom threading import Thread
msg_l=[]
format_l=[]
def talk():
while True:
msg=input('>>: ').strip()
if not msg:continue
msg_l.append(msg) def format_msg():
while True:
if msg_l:
res=msg_l.pop()
format_l.append(res.upper()) def save():
while True:
if format_l:
with open('db.txt','a',encoding='utf-8') as f:
res=format_l.pop()
f.write('%s\n' %res) if __name__ == '__main__':
t1=Thread(target=talk)
t2=Thread(target=format_msg)
t3=Thread(target=save)
t1.start()
t2.start()
t3.start()

3)主线程等待子线程结束

from threading import Thread
import time
def sayhi(name):
time.sleep(2)
print('%s say hello' %name) if __name__ == '__main__':
t=Thread(target=sayhi,args=('egon',))
t.start()
t.join() #主线程等待子线程运行结束了再往下走
print('主线程')
print(t.is_alive())
'''
egon say hello
主线程
False
'''

join()方法

二.守护线程

无论是进程还是线程,都遵循:守护xxx会等待主xxx运行完毕后被销毁

1)对主进程来说,运行完毕指的是主进程代码运行完毕

2)对主线程来说,运行完毕指的是主线程所在的进程内所有非守护线程统统运行完毕,主线程才算运行完毕

需要强调的是:运行完毕并非终止运行

from threading import Thread
import time
def sayhi(name):
time.sleep(2)
print('%s say hello' %name) if __name__ == '__main__':
t=Thread(target=sayhi,args=('egon',))
t.setDaemon(True) #必须在t.start()之前设置
t.start() print('主线程')
print(t.is_alive()) #结果为True说明此时主线程并没结束,守护进程还在
'''
主线程
True
'''

守护线程生命周期

from threading import Thread
import time
def foo():
print(123)
time.sleep(3)
print("end123") def bar():
print(456)
time.sleep(1)
print("end456") t1=Thread(target=foo)
t2=Thread(target=bar) t1.daemon=True #将t1设置为守护进程,主进程结束后t1也结束,
t1.start() #可能会出现t1没有完全完全走完就结束的情况
t2.start()
print("main-------") """
运行结果:
123
456
main-------
end456
"""

案例分析

三.Python GIL(Global Interpreter Lock)

https://www.cnblogs.com/linhaifeng/articles/7449853.html

五.同步锁

1.GIL与lock

1)线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock仍然没有被释放则阻塞,即便是拿到执行权限GIL也要立刻交出来

2)join是等待所有,即整体串行,而锁只是锁住修改共享数据的部分,即部分串行,要想保证数据安全的根本原理在于让并发变成串行,join与互斥锁都可以实现,毫无疑问,互斥锁的部分串行效率要更高

3)GIL 与Lock是两把锁,保护的数据不一样,前者是解释器级别的(当然保护的就是解释器级别的数据,比如垃圾回收的数据),后者是保护用户自己开发的应用程序的数据,很明显GIL不负责这件事,只能用户自定义加锁处理,即Lock

2.过程分析

所有线程抢的是GIL锁,或者说所有线程抢的是执行权限

线程1抢到GIL锁,拿到执行权限,开始执行,然后加了一把Lock,还没有执行完毕,即线程1还未释放Lock,有可能线程2抢到GIL锁,开始执行,执行过程中发现Lock还没有被线程1释放,于是线程2进入阻塞,被夺走执行权限,有可能线程1拿到GIL,然后正常执行到释放Lock。。。这就导致了串行运行的效果

既然是串行,那我们执行

t1.start()

t1.join

t2.start()

t2.join()

这也是串行执行啊,为何还要加Lock呢,需知join是等待t1所有的代码执行完,相当于锁住了t1的所有代码,而Lock只是锁住一部分操作共享数据的代码。

3.Lock使用

锁通常被用来实现对共享资源的同步访问。为每一个共享资源创建一个Lock对象,当你需要访问该资源时,调用acquire方法来获取锁对象(如果其它线程已经获得了该锁,则当前线程需等待其被释放),待资源访问完后,再调用release方法释放锁:

import threading

R=threading.Lock()

R.acquire()  #获取所对象
'''
对公共数据的操作
'''
R.release() #释放
#1.100个线程去抢GIL锁,即抢执行权限
#2. 肯定有一个线程先抢到GIL(暂且称为线程1),然后开始执行,一旦执行就会拿到lock.acquire()
#3. 极有可能线程1还未运行完毕,就有另外一个线程2抢到GIL,然后开始运行,但线程2发现互斥锁lock还未被线程1释放,于是阻塞,被迫交出执行权限,即释放GIL
#4.直到线程1重新抢到GIL,开始从上次暂停的位置继续执行,直到正常释放互斥锁lock,然后其他的线程再重复2 3 4的过程

GIL锁与互斥锁综合分析

#不加锁:并发执行,速度快,数据不安全
from threading import current_thread,Thread,Lock
import os,time
def task():
global n
print('%s is running' %current_thread().getName())
temp=n
time.sleep(0.5)
n=temp-1 if __name__ == '__main__':
n=100
lock=Lock()
threads=[]
start_time=time.time()
for i in range(100):
t=Thread(target=task)
threads.append(t)
t.start()
for t in threads:
t.join() stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n)) '''
Thread-1 is running
Thread-2 is running
......
Thread-100 is running
主:0.5216062068939209 n:99
''' #不加锁:未加锁部分并发执行,加锁部分串行执行,速度慢,数据安全
from threading import current_thread,Thread,Lock
import os,time
def task():
#未加锁的代码并发运行
time.sleep(3)
print('%s start to run' %current_thread().getName())
global n
#加锁的代码串行运行
lock.acquire()
temp=n
time.sleep(0.5)
n=temp-1
lock.release() if __name__ == '__main__':
n=100
lock=Lock()
threads=[]
start_time=time.time()
for i in range(100):
t=Thread(target=task)
threads.append(t)
t.start()
for t in threads:
t.join()
stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n)) '''
Thread-1 is running
Thread-2 is running
......
Thread-100 is running
主:53.294203758239746 n:0
''' #思考:既然加锁会让运行变成串行,那么我在start之后立即使用join,就不用加锁了啊,也是串行的效果啊
#没错:在start之后立刻使用jion,肯定会将100个任务的执行变成串行,毫无疑问,最终n的结果也肯定是0,是安全的,但问题是
#start后立即join:任务内的所有代码都是串行执行的,而加锁,只是加锁的部分即修改共享数据的部分是串行的
#单从保证数据安全方面,二者都可以实现,但很明显是加锁的效率更高.
from threading import current_thread,Thread,Lock
import os,time
def task():
time.sleep(3)
print('%s start to run' %current_thread().getName())
global n
temp=n
time.sleep(0.5)
n=temp-1 if __name__ == '__main__':
n=100
lock=Lock()
start_time=time.time()
for i in range(100):
t=Thread(target=task)
t.start()
t.join()
stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n)) '''
Thread-1 start to run
Thread-2 start to run
......
Thread-100 start to run
主:350.6937336921692 n:0 #耗时是多么的恐怖
'''

互斥锁与join的区别

六.死锁现象与递归锁

所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁

from threading import Thread,Lock
import time
mutexA=Lock()
mutexB=Lock() class MyThread(Thread):
def run(self):
self.func1()
self.func2() def func1(self):
mutexA.acquire()
print('\033[41m%s 拿到A锁\033[0m' %self.name) mutexB.acquire()
print('\033[42m%s 拿到B锁\033[0m' %self.name)
mutexB.release()
mutexA.release() def func2(self):
mutexB.acquire()
print('\033[43m%s 拿到B锁\033[0m' %self.name)
time.sleep(2) mutexA.acquire()
print('\033[44m%s 拿到A锁\033[0m' %self.name)
mutexA.release() mutexB.release() if __name__ == '__main__':
for i in range(10):
t=MyThread()
t.start() '''
Thread-1 拿到A锁
Thread-1 拿到B锁
Thread-1 拿到B锁
Thread-2 拿到A锁
然后就卡住,死锁了
'''

死锁现象

解决方法,递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。

这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁:

mutexA=mutexB=threading.RLock() #一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,则counter继续加1,
#这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止

七.信号量Semaphore

同进程的一样

Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。

实例:(同时只有5个线程可以获得semaphore,即可以限制最大连接数为5):

from threading import Thread,Semaphore
import threading
import time
# def func():
# if sm.acquire():
# print (threading.currentThread().getName() + ' get semaphore')
# time.sleep(2)
# sm.release()
def func():
sm.acquire()
print('%s get sm' %threading.current_thread().getName())
time.sleep(3)
sm.release()
if __name__ == '__main__':
sm=Semaphore(5)
for i in range(23):
t=Thread(target=func)
t.start()

与进程池是完全不同的概念,进程池Pool(4),最大只能产生4个进程,而且从头到尾都只是这四个进程,不会产生新的,而信号量是产生一堆线程/进程

互斥锁与信号量推荐博客:http://url.cn/5DMsS9r

八.Event

同进程的一样

线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其 他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就会变得非常棘手。为了解决这些问题,我们需要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行。

event.isSet():返回event的状态值;

event.wait():如果 event.isSet()==False将阻塞线程;

event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;

event.clear():恢复event的状态值为False。
import threading,time
event = threading.Event()
def lighter():
count = 0
event.set() #先设置绿灯
while True:
if count > 5 and count < 10:#改成红灯
event.clear()#标志位清了
print('\033[41;1mred light is on ...\033[0m')
elif count > 10:
event.set()#变绿灯
count = 0
else:
print('\033[42;1mgreen light is on ...\033[0m')
time.sleep(1)
count += 1 def car(name):
while True:
if event.is_set():#代表绿灯
print('[%s] running...'%name)
time.sleep(1)
else:
print('[%s] sees red light ,waiting ...' %name)
event.wait()
print('\033[34;1m[%s] green light is on,start going ... \033[0m' %name) light = threading.Thread(target=lighter,)
light.start() car1 = threading.Thread(target=car,args=('宝马',))
car1.start()

红绿灯

九.条件Condition

使得线程等待,只有满足某条件时,才释放n个线程

import threading

def run(n):
con.acquire()
con.wait()
print("run the thread: %s" %n)
con.release() if __name__ == '__main__': con = threading.Condition()
for i in range(10):
t = threading.Thread(target=run, args=(i,))
t.start() while True:
inp = input('>>>')
if inp == 'q':
break
con.acquire()
con.notify(int(inp))
con.release()

十.定时器

定时器,指定n秒后执行某操作

from threading import Timer
def hello():
print("hello, world") t = Timer(1, hello)
t.start() # after 1 seconds, "hello, world" will be printed
from threading import Timer
import random,time class Code:
def __init__(self):
self.make_cache() def make_cache(self,interval=5):
self.cache=self.make_code()
print(self.cache)
self.t=Timer(interval,self.make_cache)
self.t.start() def make_code(self,n=4):
res=''
for i in range(n):
s1=str(random.randint(0,9))
s2=chr(random.randint(65,90))
res+=random.choice([s1,s2])
return res def check(self):
while True:
inp=input('>>: ').strip()
if inp.upper() == self.cache:
print('验证成功',end='\n')
self.t.cancel()
break if __name__ == '__main__':
obj=Code()
obj.check()

验证码定时器

十一.线程queue

queue队列 :使用import queue,用法与进程Queue一样

class queue.Queue(maxsize=0) #先进先出

import queue

q=queue.Queue()
q.put('first')
q.put('second')
q.put('third') print(q.get())
print(q.get())
print(q.get())
'''
结果(先进先出):
first
second
third
'''

class queue.LifoQueue(maxsize=0) #last in fisrt out

import queue

q=queue.LifoQueue()
q.put('first')
q.put('second')
q.put('third') print(q.get())
print(q.get())
print(q.get())
'''
结果(后进先出):
third
second
first
'''

后进先出

class queue.PriorityQueue(maxsize=0) #存储数据时可设置优先级的队列

import queue

q=queue.PriorityQueue()
#put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高
q.put((20,'a'))
q.put((10,'b'))
q.put((30,'c')) print(q.get())
print(q.get())
print(q.get())
'''
结果(数字越小优先级越高,优先级高的优先出队):
(10, 'b')
(20, 'a')
(30, 'c')
'''

设置优先级

python并发编程之多线程(实践篇)的更多相关文章

  1. Python并发编程04 /多线程、生产消费者模型、线程进程对比、线程的方法、线程join、守护线程、线程互斥锁

    Python并发编程04 /多线程.生产消费者模型.线程进程对比.线程的方法.线程join.守护线程.线程互斥锁 目录 Python并发编程04 /多线程.生产消费者模型.线程进程对比.线程的方法.线 ...

  2. python并发编程之多进程(实践篇)

    一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.Python提供了multiproce ...

  3. python并发编程之多进程(实践篇) 转

    一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.Python提供了multiproce ...

  4. 29 python 并发编程之多线程理论

    一 什么是线程 在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程 线程顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程 车间负责把资源整合 ...

  5. 三 python并发编程之多线程-理论

    一 什么是线程 在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程 线程顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程 车间负责把资源整合 ...

  6. python并发编程之多线程理论部分

    阅读目录 一 什么是线程 二 线程的创建开销小 三 线程与进程的区别 四 为何要用多线程 五 多线程的应用举例 六 经典的线程模型(了解) 七 POSIX线程(了解) 八 在用户空间实现的线程(了解) ...

  7. 35、python并发编程之多线程(理论篇)

    一 什么是线程 二 线程的创建开销小 三 线程与进程的区别 四 为何要用多线程 五 多线程的应用举例 六 经典的线程模型(了解) 七 POSIX线程(了解) 八 在用户空间实现的线程(了解) 九 在内 ...

  8. python并发编程之多线程

    一  同步锁 注意: 1线程抢的是GIL锁,GIL锁就是执行权限,拿到权限后才能拿到互斥锁Lock,但是如果发现Lock没有被释放而阻塞,则立即交出拿到的执行权. 2join是等待所有,即整体串行,而 ...

  9. python并发编程之多线程基础知识点

    1.线程理论知识 概念:指的是一条流水线的工作过程的总称,是一个抽象的概念,是CPU基本执行单位. 进程和线程之间的区别: 1. 进程仅仅是一个资源单位,其中包含程序运行所需的资源,而线程就相当于车间 ...

随机推荐

  1. 解决Ubuntu重启后,core_pattern失效问题——手动关闭apport

    云主机重启后,core_pattern,即/proc/sys/kernel/core_pattern和/etc/sysctl*配置失效,被系统自动修改. 配置后,重启后core_pattern被重写 ...

  2. (转载):ganglia之环境搭建部署

    转载:http://www.360doc.com/content/19/0211/12/62122823_814215724.shtml 借鉴:https://blog.csdn.net/lswnew ...

  3. 如何在OpenFOAM中增加边界条件【翻译】

    注:如有翻译不妥,还请见谅 翻译自:http://openfoamwiki.net/index.php/HowTo_Adding_a_new_boundary_condition 首先请看:http: ...

  4. Arts打卡第8周

    Algorithm.主要是为了编程训练和学习. 每周至少做一个 leetcode 的算法题(先从Easy开始,然后再Medium,最后才Hard). 进行编程训练,如果不训练你看再多的算法书,你依然不 ...

  5. zabbix 定义触发器,并使用邮件,微信消息报警。

    触发器可根据监控项获取到的值来进行一些操作,如监控项获取到的values为0,触发器可判断为正常,如果获取到了1,就触发报警. 定义报警方式比较简单,但是用shell脚本实现起来,总是有格式问题,所以 ...

  6. 一个项目里,httpclient竟然出现了四种

    有网友提问: 今年年初,到一家互联网公司实习,该公司是国内行业龙头.不过技术和管理方面,却弱爆了.那里的程序员,每天都在看邮件,查问题工单.这些问题,多半是他们设计不当,造成的.代码写

  7. git notes的使用

    1. 获取notes git fetch origin refs/notes/*:refs/notes/* 2. 设置notes 2.1 git config --add core.notesRef ...

  8. lua字符串处理(string库用法)

    原文地址http://www.freecls.com/a/2712/f lua的string库是用来处理字符串的,基础函数如下 string.byte(s [, i [, j]]) string.by ...

  9. 006-多线程-集合-Set-ConcurrentSkipListSet

    一.简介 ConcurrentSkipListSet是线程安全的有序的集合,适用于高并发的场景.ConcurrentSkipListSet和TreeSet,它们虽然都是有序的集合.但是,第一,它们的线 ...

  10. 24Flutter中常见的表单有TextField单行文本框,TextField多行文本框、CheckBox、Radio、Switch

    一.Flutter常用表单介绍: CheckboxListTile.RadioListTile.SwitchListTile.Slide. 二.TextField:表单常见属性: maxLines:设 ...