题目:http://acm.hdu.edu.cn/showproblem.php?pid=5230

题意:给定n,c,l,r。求有多少种方法从1~n-1选取任意k数每个数的权重为其下标,使得这些数字之和加上c之后在l,r范围内。

题解:第一反应是计数01包,但是范围给定的n太大,TLE。。。 然后仔细想想,不就是求l~r范围内不重复的整数划分数嘛。

dp[i][j]表示j这个数字,当前的拆分拥有i个拆分数时的方案数。

先考虑允许重复数字 : dp[i][j] = dp[i][j - i] + dp[i - 1][j - 1];

考虑分成两类,

1、dp[i][j - i]:这种拆分方案(拥有i个数字的拆分方案),如果没有1,就比如7 = 3 + 4这样,然后每个数字都加上一,

就变成了9 = 5 + 4。所以dp[2][9]可以由dp[2][7]转化过来。当然7 = 1 + 6也是合法解。

2、dp[i - 1][j - 1]:这种拆分方案有1,比如4 = 3 + 1,那么我可以截去那个1,变成3 = 3,然后加上最后那个1,就变成了

4 = 3 + 1,所以dp[2][4]可以由dp[1][3]转化过来。

这里提供了一种思维--对数字的组合分类以及每个数都+1的状态转移。这里对是否有1存在做了一个分类。仿照这个思想我们去定义新的dp[i][j].

dp[i][j]表示j这个数字,当前的拆分拥有i个不重复拆分数时的方案数。

按照上述的思维:

(a) 当不存在1的时候,dp[i][j]可以由dp[i][j-i]转移而来;

(b) 当存在1的时候,由于dp的定义只存在一个1。那么我们把这个1单独拎出来,然后对剩下的i-1分成j-i组 dp[i][j]=dp[i-1][j-i];

综合上述的两种情况:dp[i][j] = dp[i][j - i] + dp[i - 1][j - i];

当这里,这道题目还是没法ac。。。因为如果我们用普通的方法去求解这个dp,内存吃不住的,用滚动数组优化一下。

(真心不容易,,,还有一些细节要处理)

ac_code:

#include <cstdio>
#include <iostream>
#include <cstring>
#define mt(a) memset(a,0,sizeof(a))
using namespace std;
typedef long long ll;
int dp[][];
const int mod=;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,c,l,r;
scanf("%d %d %d %d",&n,&c,&l,&r);
mt(dp);
if(c>r)
{
cout<<<<endl;
continue;
}
dp[][]=;
int L=l-c;
int R=r-c;
int ans= (L==);// 对0的情况做一个特判断
L=max(,L);
//R=max(n-1,R);
int now=;
for(int i=;i*(i+)/ <= max(R,n-);i++)// 个数 由于是从1开始枚举 那么枚举i个数字的和最小为 i*(i+1)/2 还有就是能取的上限也要注意
{
for(int j=i*(i+)/;j<=R;j++) // 分数 同上,从最小的开始,优化
{
dp[now][j]=(dp[now][j-i]+dp[!now][j-i])%mod; // 滚动数组
if(j>=L && j<=R)
{
ans+=dp[now][j];
ans%=mod;
}
}
memset(dp[!now],,sizeof(dp[!now]));
now=!now;
}
printf("%d\n",ans);
}
return ;
}

hdu 5230 整数划分 dp的更多相关文章

  1. 【NOI2019模拟2019.6.27】B (生成函数+整数划分dp|多项式exp)

    Description: \(1<=n,k<=1e5,mod~1e9+7\) 题解: 考虑最经典的排列dp,每次插入第\(i\)大的数,那么可以增加的逆序对个数是\(0-i-1\). 不难 ...

  2. 51nod 1201 整数划分 dp

    1201 整数划分 基准时间限制:1 秒 空间限制:131072 KB   收藏  关注 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} {1,5} {2,4} {1,2 ...

  3. bzoj 3612 [Heoi2014]平衡——整数划分(dp)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3612 因为力矩的缘故,变成了整数划分. 学习到了整数划分.就是那个图一样的套路.https: ...

  4. hdu 1028 & hdu 1398 —— 整数划分(生成函数)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1028 整数划分,每个数可以用无限次: 所以构造 f(x) = (1+x+x2+x3+...)(1+x2+x ...

  5. bzoj 3612: [Heoi2014]平衡【整数划分dp】

    其实就是-n~n中求选k个不同的数,和为0的方案数 学到了新姿势叫整数划分,具体实现是dp 详见:https://blog.csdn.net/Vmurder/article/details/42551 ...

  6. 2014北大研究生推免机试(校内)-复杂的整数划分(DP进阶)

    这是一道典型的整数划分题目,适合正在研究动态规划的同学练练手,但是和上一个随笔一样,我是在Coursera中评测通过的,没有找到适合的OJ有这一道题(找到的ACMer拜托告诉一声~),这道题考察得较全 ...

  7. 大概是:整数划分||DP||母函数||递推

    整数划分问题 整数划分是一个经典的问题. Input 每组输入是两个整数n和k.(1 <= n <= 50, 1 <= k <= n) Output 对于每组输入,请输出六行. ...

  8. HDU acm1028 整数划分 递归问题(递推)

    我们用递归+记忆化的方法来解决普通整数划分问题:定义 f(n,m)为将整数n划分为一系列整数之和,其中加数 最大不超过m. 得到下面的递推关系式: 当n==1 || m==1 只有一种划分,即 1 或 ...

  9. zzulioj--1719--小胖的疑惑(整数划分+dp打表)

    1719: 小胖的疑惑 Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 108  Solved: 51 SubmitStatusWeb Board De ...

随机推荐

  1. [RK3288] 外接USB设备出现丢数

    CPU:RK3288 系统:Android 5.1 主板外接 USB 接口的外设,经常会出现丢数的现象,这种问题在很多 USB 接口的外设上都遇到过,例如:USB读卡器.USB扫描枪等 有一个共同点是 ...

  2. AOP 与 Spring中AOP使用(下)

    AOP通知类型 前置通知 在目标方法执行之前进行操作 UserDao.java public class UserDao { public void add(){ System.out.println ...

  3. Json序列化指定输出字段 忽略属性

    DataContract 服务契约定义了远程访问对象和可供调用的方法,数据契约则是服务端和客户端之间要传送的自定义数据类型. 一旦声明一个类型为DataContract,那么该类型就可以被序列化在服务 ...

  4. Coherent Calculator

    计算逻辑 输入想要的参数后点击以下按钮进行计算和调整: Formula Bigger N Smaller N Bigger M Smaller M 所以在这个策略中Ft被Fixed在输入的值,其他的三 ...

  5. Jmeter BeanShell 引用变量报错Error or number too big for integer

    如果你通过CSV Data Set Config或者_StringFromFile函数来参数化你的请求,需要特别注意当参数为纯数字时,jmeter会默认将其识别成int型数据,说明jmeter并不是默 ...

  6. 0.9.0.RELEASE版本的spring cloud alibaba nacos+feign实例

    这里的feign依然是原来的feign,只不过将注册中心由eureka换成了nacos.服务提供方参见0.9.0.RELEASE版本的spring cloud alibaba nacos实例,消费方跟 ...

  7. Python之queue模块以及生产消费者模型

    队列 队列类似于一条管道,元素先进先出,进put(arg),取get() 有一点需要注意的是:队列都是在内存中操作,进程退出,队列清空,另外,队列也是一个阻塞的形态. 队列分类 队列有很多中,但都依赖 ...

  8. delphi 根据特殊符号字符获取字符串前或后的字符

    function GetBefore(substr, str:string):string; {©Drkb v.3(2007): www.drkb.ru, ®Vit (Vitaly Nevzorov) ...

  9. MySQL中使用replace into语句批量更新表数据

    作为示例,我们在这里使用名为testdb的数据库,并且在其中创建两张一模一样的表: drop table if exists test_table_1; create table test_table ...

  10. iOS笔试题02

    1. Difference between shallow copy and deep copy? 1> 浅拷贝:指针(地址)拷贝,不会产生新对象 2> 深拷贝:内容拷贝,会产生新对象 2 ...