生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

1
2
3
4
5
6
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)
...
0
1
4
9
16
25
36
49
64
81

所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

1
2
3
4
5
6
7
def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return 'done'

注意,赋值语句:

1
a, b = b, a + b

相当于:

1
2
3
t = (b, a + b) # t是一个tuple
a = t[0]
b = t[1]

但不必显式写出临时变量t就可以赋值。

上面的函数可以输出斐波那契数列的前N个数:

1
2
3
4
5
6
7
8
9
10
11
12
>>> fib(10)
1
1
2
3
5
8
13
21
34
55
done

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
n,a,b = 0,0,1 while n < max:
#print(b)
yield b
a,b = b,a+b n += 1 return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

data = fib(10)
print(data) print(data.__next__())
print(data.__next__())
print("干点别的事")
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__()) #输出
<generator object fib at 0x101be02b0>
1
干点别的事
3
8

在上面fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

>>> for n in fib(6):
... print(n)
...
1
3
8

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

>>> g = fib(6)
>>> while True:
... try:
... x = next(g)
... print('g:', x)
... except StopIteration as e:
... print('Generator return value:', e.value)
... break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

关于如何捕获错误,后面的错误处理还会详细讲解。

还可通过yield实现在单线程的情况下实现并发运算的效果  

#_*_coding:utf-8_*_
__author__ = 'Alex Li' import time
def consumer(name):
print("%s 准备吃包子啦!" %name)
while True:
baozi = yield print("包子[%s]来了,被[%s]吃了!" %(baozi,name)) def producer(name):
c = consumer('A')
c2 = consumer('B')
c.__next__()
c2.__next__()
print("老子开始准备做包子啦!")
for i in range(10):
time.sleep(1)
print("做了2个包子!")
c.send(i)
c2.send(i) producer("alex") 通过生成器实现协程并行运算

迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如listtupledictsetstr等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

*可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:
pass

实际上完全等价于:

# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
try:
# 获得下一个值:
x = next(it)
except StopIteration:
# 遇到StopIteration就退出循环
break

json & pickle 模块

用于序列化的两个模块

  • json,用于字符串 和 python数据类型间进行转换
  • pickle,用于python特有的类型 和 python的数据类型间进行转换

Json模块提供了四个功能:dumps、dump、loads、load

pickle模块提供了四个功能:dumps、dump、loads、load

python软件目录结构开发规范

Python语言规范

Python风格规范

为什么要设计好目录结构

"设计项目目录结构",就和"代码编码风格"一样,属于个人风格问题。对于这种风格上的规范,一直都存在两种态度:

  1. 一类同学认为,这种个人风格问题"无关紧要"。理由是能让程序work就好,风格问题根本不是问题。
  2. 另一类同学认为,规范化能更好的控制程序结构,让程序具有更高的可读性。

我是比较偏向于后者的,因为我是前一类同学思想行为下的直接受害者。我曾经维护过一个非常不好读的项目,其实现的逻辑并不复杂,但是却耗费了我非常长的时间去理解它想表达的意思。从此我个人对于提高项目可读性、可维护性的要求就很高了。"项目目录结构"其实也是属于"可读性和可维护性"的范畴,我们设计一个层次清晰的目录结构,就是为了达到以下两点:

  1. 可读性高: 不熟悉这个项目的代码的人,一眼就能看懂目录结构,知道程序启动脚本是哪个,测试目录在哪儿,配置文件在哪儿等等。从而非常快速的了解这个项目。
  2. 可维护性高: 定义好组织规则后,维护者就能很明确地知道,新增的哪个文件和代码应该放在什么目录之下。这个好处是,随着时间的推移,代码/配置的规模增加,项目结构不会混乱,仍然能够组织良好。

所以,我认为,保持一个层次清晰的目录结构是有必要的。更何况组织一个良好的工程目录,其实是一件很简单的事儿。

目录组织方式

关于如何组织一个较好的Python工程目录结构,已经有一些得到了共识的目录结构。在Stackoverflow的这个问题上,能看到大家对Python目录结构的讨论。

这里面说的已经很好了,我也不打算重新造轮子列举各种不同的方式,这里面我说一下我的理解和体会。

假设你的项目名为foo, 我比较建议的最方便快捷目录结构这样就足够了:

Foo/
|-- bin/
| |-- foo
|
|-- foo/
| |-- tests/
| | |-- __init__.py
| | |-- test_main.py
| |
| |-- __init__.py
| |-- main.py
|
|-- docs/
| |-- conf.py
| |-- abc.rst
|
|-- setup.py
|-- requirements.txt
|-- README

简要解释一下:

  1. bin/: 存放项目的一些可执行文件,当然你可以起名script/之类的也行。
  2. foo/: 存放项目的所有源代码。(1) 源代码中的所有模块、包都应该放在此目录。不要置于顶层目录。(2) 其子目录tests/存放单元测试代码; (3) 程序的入口最好命名为main.py
  3. docs/: 存放一些文档。
  4. setup.py: 安装、部署、打包的脚本。
  5. requirements.txt: 存放软件依赖的外部Python包列表。
  6. README: 项目说明文件。

除此之外,有一些方案给出了更加多的内容。比如LICENSE.txt,ChangeLog.txt文件等,我没有列在这里,因为这些东西主要是项目开源的时候需要用到。如果你想写一个开源软件,目录该如何组织,可以参考这篇文章

下面,再简单讲一下我对这些目录的理解和个人要求吧。

关于README的内容

这个我觉得是每个项目都应该有的一个文件,目的是能简要描述该项目的信息,让读者快速了解这个项目。

它需要说明以下几个事项:

  1. 软件定位,软件的基本功能。
  2. 运行代码的方法: 安装环境、启动命令等。
  3. 简要的使用说明。
  4. 代码目录结构说明,更详细点可以说明软件的基本原理。
  5. 常见问题说明。

我觉得有以上几点是比较好的一个README。在软件开发初期,由于开发过程中以上内容可能不明确或者发生变化,并不是一定要在一开始就将所有信息都补全。但是在项目完结的时候,是需要撰写这样的一个文档的。

可以参考Redis源码中Readme的写法,这里面简洁但是清晰的描述了Redis功能和源码结构。

关于requirements.txt和setup.py

setup.py

一般来说,用setup.py来管理代码的打包、安装、部署问题。业界标准的写法是用Python流行的打包工具setuptools来管理这些事情。这种方式普遍应用于开源项目中。不过这里的核心思想不是用标准化的工具来解决这些问题,而是说,一个项目一定要有一个安装部署工具,能快速便捷的在一台新机器上将环境装好、代码部署好和将程序运行起来。

这个我是踩过坑的。

我刚开始接触Python写项目的时候,安装环境、部署代码、运行程序这个过程全是手动完成,遇到过以下问题:

  1. 安装环境时经常忘了最近又添加了一个新的Python包,结果一到线上运行,程序就出错了。
  2. Python包的版本依赖问题,有时候我们程序中使用的是一个版本的Python包,但是官方的已经是最新的包了,通过手动安装就可能装错了。
  3. 如果依赖的包很多的话,一个一个安装这些依赖是很费时的事情。
  4. 新同学开始写项目的时候,将程序跑起来非常麻烦,因为可能经常忘了要怎么安装各种依赖。

setup.py可以将这些事情自动化起来,提高效率、减少出错的概率。"复杂的东西自动化,能自动化的东西一定要自动化。"是一个非常好的习惯。

setuptools的文档比较庞大,刚接触的话,可能不太好找到切入点。学习技术的方式就是看他人是怎么用的,可以参考一下Python的一个Web框架,flask是如何写的: setup.py

当然,简单点自己写个安装脚本(deploy.sh)替代setup.py也未尝不可。

requirements.txt

这个文件存在的目的是:

  1. 方便开发者维护软件的包依赖。将开发过程中新增的包添加进这个列表中,避免在setup.py安装依赖时漏掉软件包。
  2. 方便读者明确项目使用了哪些Python包。

这个文件的格式是每一行包含一个包依赖的说明,通常是flask>=0.10这种格式,要求是这个格式能被pip识别,这样就可以简单的通过 pip install -r requirements.txt来把所有Python包依赖都装好了。具体格式说明: 点这里

关于配置文件的使用方法

注意,在上面的目录结构中,没有将conf.py放在源码目录下,而是放在docs/目录下。

很多项目对配置文件的使用做法是:

  1. 配置文件写在一个或多个python文件中,比如此处的conf.py。
  2. 项目中哪个模块用到这个配置文件就直接通过import conf这种形式来在代码中使用配置。

这种做法我不太赞同:

  1. 这让单元测试变得困难(因为模块内部依赖了外部配置)
  2. 另一方面配置文件作为用户控制程序的接口,应当可以由用户自由指定该文件的路径。
  3. 程序组件可复用性太差,因为这种贯穿所有模块的代码硬编码方式,使得大部分模块都依赖conf.py这个文件。

所以,我认为配置的使用,更好的方式是,

  1. 模块的配置都是可以灵活配置的,不受外部配置文件的影响。
  2. 程序的配置也是可以灵活控制的。

能够佐证这个思想的是,用过nginx和mysql的同学都知道,nginx、mysql这些程序都可以自由的指定用户配置。

所以,不应当在代码中直接import conf来使用配置文件。上面目录结构中的conf.py,是给出的一个配置样例,不是在写死在程序中直接引用的配置文件。可以通过给main.py启动参数指定配置路径的方式来让程序读取配置内容。当然,这里的conf.py你可以换个类似的名字,比如settings.py。或者你也可以使用其他格式的内容来编写配置文件,比如settings.yaml之类的。

对于文档的态度

目录结构中有设docs/这个目录,用于存放代码文档。实际过程中,据我观察,80%以上的程序员都没有单独写文档的习惯。一般文档写得比较好的,都是一些开源项目。

在普通的项目中,确实没必要写非常详细的文档,我更赞同的是现在的一种流行的风格: "在代码中写文档"。即在写代码的时候,在代码文件里把软件/模块的简要用法写明。简单有用。

小结

Foo/
|-- bin/
| |-- foo
|
|-- foo/
| |-- tests/
| | |-- __init__.py
| | |-- test_main.py
| |
| |-- __init__.py
| |-- main.py
|
|-- docs/
| |-- conf.py
| |-- abc.rst
|
|-- setup.py
|-- requirements.txt
|-- README

另外,多翻翻经典项目的源码是有好处的,比如在python web开发中比较有名的框架: flask, tornado, django 都是类似的结构。

(PS. 如果有疑问、不同意看法欢迎在评论区讨论;觉得我写得还行,也可以手动点个赞支持一下~)

同系列更多其他的文章: 《创建高质量的Python项目》

插曲:代码风格

若要编写更长更复杂的 Python 代码,是时候谈一谈 编码风格了 。大部分语言都可以有多种(比如更简洁,更格式化)写法,有些写法可以更易读。让你的代码更具可读性,而良好的编码风格对此有很大的帮助。

对Python, PEP 8 已经成为多数项目遵循的代码风格指南;它推动了一种非常易于阅读且赏心悦目的编码风格。每个Python开发者都应该找个时间读一下; 以下是从中提取出来的最重要的一些点:

  • 使用 4 个空格的缩进,不要使用制表符。

    4 个空格是小缩进(允许更深的嵌套)和大缩进(易于阅读)之间很好的折衷。制表符会引起混乱,最好弃用。

  • 折行以确保其不会超过 79 个字符。

    这有助于小显示器用户阅读,也可以让大显示器能并排显示几个代码文件。

  • 使用空行分隔函数和类,以及函数内的大块代码。

  • 如果可能,注释独占一行。

  • 使用文档字符串。

  • 在操作符两边和逗号之后加空格, 但不要直接在左括号后和右括号前加: a = f(1, 2) + g(3, 4).

  • 类和函数的命名风格要一致;传统上使用 CamelCase 驼峰风格命名类 而用 lower_case_with_underscores(小写字母加下划线)命名函数和方法。方法的第一个参数名称应为 self (查看 初识类 以获得更多有关类和方法的规则)。

  • 如果您的代码要在国际环境中使用,不要使用花哨的编码。Python 默认的 UTF-8 或者 ASCII 在任何时候都是最好的选择。

  • 同样,只要存在哪怕一丁点可能有使用另一种不同语言的人会阅读或维护你的代码,就不要在标识符中使用非 ASCII 字符。

脚注

[1] 事实上,  按对象引用传递   可能是更恰当的说法,因为如果传递了一个可变对象,调用函数将看到任何被调用函数对该可变对象做出的改变(比如添加到列表中的元素)

文档字符串

Python有一种独一无二的的注释方式: 使用文档字符串. 文档字符串是包, 模块, 类或函数里的第一个语句. 这些字符串可以通过对象的__doc__成员被自动提取, 并且被pydoc所用. (你可以在你的模块上运行pydoc试一把, 看看它长什么样). 我们对文档字符串的惯例是使用三重双引号”“”( PEP-257 ). 一个文档字符串应该这样组织: 首先是一行以句号, 问号或惊叹号结尾的概述(或者该文档字符串单纯只有一行). 接着是一个空行. 接着是文档字符串剩下的部分, 它应该与文档字符串的第一行的第一个引号对齐. 下面有更多文档字符串的格式化规范.

模块

每个文件应该包含一个许可样板. 根据项目使用的许可(例如, Apache 2.0, BSD, LGPL, GPL), 选择合适的样板.

函数和方法

下文所指的函数,包括函数, 方法, 以及生成器.

一个函数必须要有文档字符串, 除非它满足以下条件:

  1. 外部不可见
  2. 非常短小
  3. 简单明了

文档字符串应该包含函数做什么, 以及输入和输出的详细描述. 通常, 不应该描述”怎么做”, 除非是一些复杂的算法. 文档字符串应该提供足够的信息, 当别人编写代码调用该函数时, 他不需要看一行代码, 只要看文档字符串就可以了. 对于复杂的代码, 在代码旁边加注释会比使用文档字符串更有意义.

关于函数的几个方面应该在特定的小节中进行描述记录, 这几个方面如下文所述. 每节应该以一个标题行开始. 标题行以冒号结尾. 除标题行外, 节的其他内容应被缩进2个空格.

python基础之迭代器、装饰器、软件开发目录结构规范的更多相关文章

  1. python基础-内置装饰器classmethod和staticmethod

    面向对象编程之classmethod和staticmethod classmethod 和 staticmethod都是python内置的装饰器 classmethod 的作用:给在类内部定义的方法装 ...

  2. python基础-函数之装饰器、迭代器与生成器

    1. 函数嵌套 1.1 函数嵌套调用 函数的嵌套调用:在调用一个函数的过程中,又调用了其他函数 def bar(): print("from in the bar.") def f ...

  3. python基础-5.2装饰器

    1.了解装饰器前准备 #### 第一波 #### def foo(): print 'foo' foo #表示是函数,仅指向了函数的地址,为执行 foo() #表示执行foo函数 #### 第二波 # ...

  4. python基础5之装饰器

    内容概要: 一.装饰器前期知识储备 1.python解释函数代码过程: python解释器从上往下顺序解释代码,碰到函数的定义代码块不会立即执行它,而是将其放在内存中,等到该函数被调用时,才执行其内部 ...

  5. python基础篇_004_装饰器函数

    python装饰器函数 1.装饰器函数引导 功能:计算函数执行时长 import time """ 方式一: 函数首位添加时间,差值就是函数执行时间 缺点:每个函数都要加 ...

  6. python基础-面向对象(装饰器)

    属性:   @property   @method_name.setter   @method_name.deleter   三个标签都是放在方法的上面来使用,且方法名要和后续使用的   变量名字相一 ...

  7. Python基础:13装饰器

    装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的应用有插入日志.性能测试.事务处理等.装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同 ...

  8. python基础之内置装饰器

    装饰器 简介 功能与格式 内置装饰器 @classmethod @propertry @staticmethod 其它 ---------------------------------------- ...

  9. python基础--闭包、装饰器

    装饰器的详细使用 (1)小知识点补充 在这里我们先学一个简单的知识点. li = ['alex', '银角', '女神', 'egon', '太白'] for i in enumerate(li): ...

随机推荐

  1. Atitit View事件分发机制

    1. Atitit View事件分发机制 1. Atitit View事件分发机制1 1.1. 三个关键方法 dispatchTouchEvent onInterceptTouchEvent onTo ...

  2. 没有水果机的也来体验下Visual Studio for Mac

    在去年微软已经宣布.NET将实现真正的跨平台,并且发布了Mac和Linux版的Visual Studio Code编辑器,但强大的Visual Studio确只有Windows版. 还坚守.NET开发 ...

  3. 元素绝对定位以后设置了高宽,a标签不能点击的原因总结

    元素绝对定位以后设置了高宽,a标签不能点击的原因: 1.元素内并无内容 2.背景是透明的,无任何背景图或者颜色 解决方法: 1.如果不是绝对定位元素的,可以用相对定位 2.给元素加透明的背景图 3.I ...

  4. The transaction log for database 'xxxx' is full due to 'ACTIVE_TRANSACTION'

    今天查看Job的History,发现Job 运行失败,错误信息是:“The transaction log for database 'xxxx' is full due to 'ACTIVE_TRA ...

  5. OpenCASCADE Curve Length Calculation

    OpenCASCADE Curve Length Calculation eryar@163.com Abstract. The natural parametric equations of a c ...

  6. 深入理解定位父级offsetParent及偏移大小

    前面的话 偏移量(offset dimension)是javascript中的一个重要的概念.涉及到偏移量的主要是offsetLeft.offsetTop.offsetHeight.offsetWid ...

  7. 深入理解javascript作用域系列第五篇——一张图理解执行环境和作用域

    × 目录 [1]图示 [2]概念 [3]说明[4]总结 前面的话 对于执行环境(execution context)和作用域(scope)并不容易区分,甚至很多人认为它们就是一回事,只是高程和犀牛书关 ...

  8. C# 一个页面,多个Updatepannel,多个Timer

    这几天在搞一个项目,其中一个页面里面有好几组数据要定时刷新,但是,每一组数据要刷新的时间不一样,所以就需要用到多个定时器.本人刚工作不久,对Js 的Ajax不太了解,反而对微软的那个Ajax相对了解一 ...

  9. Android动画学习(一)——Android动画系统框架简介

    2015-11-09补充:Drawable Animation极有可能是Frame Animation 这几天在找工作,面试的时候被问到了Android动画,之前完全没接触过这部分,直接给懵了,当然其 ...

  10. js的并行加载以及顺序执行

    重新温习了下这段内容,发现各个浏览器的兼容性真的是搞大了头,处理起来很是麻烦. 现在现总结下并行加载多个js的方法: 1,对于动态createElement('script')的方式,对所有浏览器都是 ...