「CF235E」Number Challenge「莫比乌斯反演」
一个结论:(从二维扩展来的,三维也是对的,证明可以考虑质因数分解)
\]
\]
\]
\]
记:
\]
\]
\]
把先把\(g(x)=\sum_{x|k'}\lfloor\frac{c}{k'}\rfloor\)预处理出来。
然后可以预处理出来\(f(x)=\sum_{d|x}\mu(d)g(d),x\in[1,ab]\)
则答案为:
\]
#include <algorithm>
#include <cstdio>
using namespace std;
const int m = (1 << 30) - 1;
const int N = 4e6 + 5;
int p[N], mu[N], f[N], c;
bool tag[N];
void sieve(int n) {
mu[1] = 1;
for(int i = 2; i <= n; i ++) {
if(!tag[i]) { p[++ c] = i; mu[i] = -1; }
for(int j = 1; j <= c && i * p[j] <= n; j ++) {
tag[i * p[j]] = 1;
if(i % p[j] == 0) break ;
mu[i * p[j]] = - mu[i];
}
}
}
int main() {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
if(a > b) swap(a, b);
if(a > c) swap(a, c);
if(b > c) swap(b, c);
int ans = 0; sieve(a * b);
for(int i = 1; i <= c; i ++) {
int g = 0;
for(int j = i; j <= c; j += i) {
g += c / j;
}
for(int j = i; j <= a * b; j += i) {
(f[j] += mu[i] * g) &= m;
}
}
for(int i = 1; i <= a; i ++) {
for(int j = 1; j <= b; j ++) {
if(__gcd(i, j) == 1) {
(ans += (1ll * (a / i) * (b / j) * f[i * j]) & m) &= m;
}
}
}
printf("%d\n", ans);
return 0;
}
「CF235E」Number Challenge「莫比乌斯反演」的更多相关文章
- ☆ [POI2007] ZAP-Queries 「莫比乌斯反演」
题目类型:莫比乌斯反演 传送门:>Here< 题意:求有多少对正整数对\((a,b)\),满足\(0<a<A\),\(0<b<B\),\(gcd(a,b)=d\) ...
- BZOJ 1114 Number theory(莫比乌斯反演+预处理)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=71738 题意:给你一个整数序列a1, a2, a3, ... , ...
- LOJ2476. 「2018 集训队互测 Day 3」蒜头的奖杯 & LOJ2565. 「SDOI2018」旧试题(莫比乌斯反演)
题目链接 LOJ2476:https://loj.ac/problem/2476 LOJ2565:https://loj.ac/problem/2565 题解 参考照搬了 wxh 的博客. 为了方便, ...
- 「BZOJ 3529」「SDOI 2014」数表「莫比乌斯反演」
题意 有一张 \(n\times m\) 的数表,其第\(i\)行第\(j\)列的数值为能同时整除\(i\)和\(j\)的所有自然数之和. \(T\)组数据,询问对于给定的 \(n,m,a\) , 计 ...
- 「BZOJ 3994」「SDOI 2015」约数个数和「莫比乌斯反演」
题意 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)\). 题解 首先证个公式: \[d(ij) = \sum_{x|i}\sum_ ...
- 「洛谷P3768」简单的数学题 莫比乌斯反演+杜教筛
题目链接 简单的数学题 题目描述 输入一个整数n和一个整数p,你需要求出 \[\sum_{i=1}^n\sum_{j=1}^n (i\cdot j\cdot gcd(i,j))\ mod\ p\] ...
- [计蒜客] tsy's number 解题报告 (莫比乌斯反演+数论分块)
interlinkage: https://nanti.jisuanke.com/t/38226 description: solution: 显然$\frac{\phi(j^2)}{\phi(j)} ...
- LOJ# 572. 「LibreOJ Round #11」Misaka Network 与求和(min25筛,杜教筛,莫比乌斯反演)
题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质 ...
- loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数
题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...
随机推荐
- Vue.js 2.x 混入
Vue.js 2.x mixins 混入 混入(mixins)是一种分发vue组件中可复用功能的非常灵活的方式.混入对象可以包含任意组件选项.当组件使用混入对象时,所有混入对象的选项将被混入该组件本身 ...
- 开始Jupyter Notebooks
开始Jupyter Notebooks 安装Anaconda 因为不能有空格,所以没有选C:\Program Files 认识Jupyter Notebooks 修改 jupyter notebook ...
- Quartz入门以及相关表达式使用
目的: 1.Quartz简介及应用场景 2.Quartz简单触发器 SimpleTrigger介绍 3.Quartz表达式触发器CronTirgger介绍 4.Quartz中参数传递 5.Spring ...
- springboot启动流程(目录)
springboot出现有段时间了,不过却一直没有怎么去更多地了解它.一方面是工作的原因,另一方面是原来觉得是否有这个必要,但要持续做java似乎最终逃不开要去了解它的命运.于是考虑花一段时间去学习一 ...
- 【转载】Request对象的作用以及常见属性
Request对象是Asp.Net应用程序中非常重要的一个内置对象,其作用主要用于服务器端获取客户端提交过来的相应信息,比较常用的有使用Requset对象获取用户提交的html表单信息,Request ...
- vue 鼠标移入移出事件执行多次(尤其ie)
来自:https://www.cnblogs.com/myfirstboke/p/9150809.html 侵删 <p @mouseover="over($event)" ...
- 链接标签<a>去掉下划线
1.去掉下划线 text-decoration:none:
- 铰链joints
Fixed Joint原理像阶层里的父子结构.关节会将对象锁在一个世界坐标或者锁在一个连接的刚体. 固定关节可以设定断裂力道(Break Farce)和断裂扭力(Break torque),破坏关节所 ...
- Vue注意事项
在使用Vue中的函数或自己定义的函数或指令的时候,Vue说明如下 在一些自己定义或系统定义的驼峰命名规则的时候,你需要到元素区域引用的使用中间的大写要改成小写在谭家 一条横杠如: 你在var=new ...
- Linux中关于dns配置的小记
一. 如上图 我当时的网卡配置文件里是静态模式,然后DNS1=114.114.114.114. 就是纳闷,这是为什么 随后,我又是将网卡配置文件,修改为DNS1=114.114.114.113. 重启 ...