使用Python画一朵玫瑰花
# -*- coding: utf-8 -*-
# @Time : 18-9-14 下午12:47
# @Author : Felix Wang from turtle import *
import time setup(600, 800, 0, 0)
speed(0)
penup()
seth(90)
fd(340)
seth(0)
pendown()
#
speed(5)
begin_fill()
fillcolor('red')
circle(50, 30) for i in range(10):
fd(1)
left(10)
#
circle(40, 40)
#
for i in range(6):
fd(1)
left(3)
#
circle(80, 40)
#
for i in range(20):
fd(0.5)
left(5)
#
circle(80, 45)
#
for i in range(10):
fd(2)
left(1)
#
circle(80, 25)
#
for i in range(20):
fd(1)
left(4)
#
circle(50, 50)
#
time.sleep(0.1)
#
circle(120, 55)
#
speed(0)
#
seth(-90)
fd(70)
#
right(150)
fd(20) left(140)
circle(140, 90) left(30)
circle(160, 100) left(130)
fd(25) penup()
right(150)
circle(40, 80)
pendown() left(115)
fd(60) penup()
left(180)
fd(60)
pendown() end_fill() right(120)
circle(-50, 50)
circle(-20, 90) speed(1)
fd(75) speed(0)
circle(90, 110) penup()
left(162)
fd(185)
left(170)
pendown()
circle(200, 10)
circle(100, 40)
circle(-52, 115)
left(20)
circle(100, 20)
circle(300, 20)
speed(1)
fd(250) penup()
speed(0)
left(180)
fd(250)
circle(-300, 7)
right(80)
circle(200, 5)
pendown() left(60)
begin_fill()
fillcolor('green')
circle(-80, 100)
right(90)
fd(10)
left(20)
circle(-63, 127)
end_fill() penup()
left(50)
fd(20)
left(180) pendown()
circle(200, 25) penup()
right(150) fd(180) right(40)
pendown()
begin_fill()
fillcolor('green')
circle(-100, 80)
right(150)
fd(10)
left(60)
circle(-80, 98)
end_fill() penup()
left(60)
fd(13)
left(180) pendown()
speed(1)
circle(-200, 23) exitonclick()
效果图:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAk0AAAK8CAYAAADyNIvkAAAABHNCSVQICAgIfAhkiAAAABl0RVh0U29mdHdhcmUAZ25vbWUtc2NyZWVuc2hvdO8Dvz4AACAASURBVHic7d15mGR5WeD790RE7pm1N71j7031wtJNs6nI0uziBirCHQdRHx2F8V7H8V6a0QlhWGQcHJiZx9FxUNsF5Y4ComwqMIINNrRsXqChF+h9rS2rco8494+szMolMutkZiznnPh8nqef6KrKPHkisjLiW+/vlyeTl//Qi9MA8iNtxvx8M5KBWtSS5d+M+dlmVPecG489b09M3/bFuGd+OEZqvTzRNmp5n5sxO1WJPZdcEZedPxGPfu6TcevcSIwV8j5n/Pw15+LwQ0fjWKMWex+zN3YN9ORkYVvm5ufj0KFjccUVV8aVVx6MNG1Go9GIZrMZERGVSiWq1WpUKpX45698Nb76ta/G/n27YmCg9V/0zhzvaLzi4GPjFY87N4bShUgbCxEnjxeVSiTVWsxWqvGer90bf/a1u2P/vt2rjldLU80E7dGIyYePxJGZRjTSiIgkKtVKDAwOxuj4aOwaqUZy2kNMx0OPROw6e3+MzB2L+erJiEhn48jhC+Mn3vKv43uGH44P1j8T35geiuFqx+9URKRx/OFH4pHpjZ8rkpFdcd4Zw7Gt09nwPs/FsWMXxst++l8s3ucvfiS+NDUcozu5z82FODE5FZNTczG30Iw0kqjWBmJoZDh27xqOwcoOjr2ZLJ+/5nwcPnpmvORXfi1etPdb8Z63/1Z8dm5COFEIzWYzDh06Fk996lPjnHPOjqmpqdioL5Ikicsfd1mMj4/HzZ+7OQ7s3xPVaqXzx3v0aPzbJ18UzzprItLjj0Zjg+PVkiR+/OJ9cd5oLf7T5++MAwf2Lh9PNEFbNGLy0GBc99q3xiuu2h/jQ0lEYyFmjh+Oe+/4atz0sQ/H3902F/v3DGwcTs2ZePjo1fG63/mpuK72rfjjX35bfGJ+d+weiIg0Yt1XappG57980zjxyHRc+drfjtddu/Gr9/wX3x0/884vxu4Dw7Gl7ujmfZ6fjoeO74lrXvzyeP5TDsaFZ+6KoXQ6jjx4d3z9C5+Ov/6br8Tk0FAMnrZstyHLfVmYi9ndF8cTLpyIkcrl8YQLavHJrzRiotapkoP2OXxkMi6//LI488wzYmpqKlr8jV9lYWEhzjr7MXHZpZfGHXfcEfv27er48X7kkgPxzP0D0Th+OE77RDI3E8/aPxLfuuhAfOCuI8vHq2kmaIc0Ggu12LV/X0wMJdGcm4mp+UoM7zojLnnSs+LiJ1wTB3/7TfGbNz0Sc/NpVMd2xzl7ByOJiLljh+OBYwuRDA3H8GAlqpWTr9rpQhx54OE4OjQeZx9YO15pxLGHH4nj1VqMjI/H3vHailhpxszkiTh6Yi7mGmlUqgMxMjEae8YGTr7NQhw/dCKOzy1Eo5lGM42oVGsxMjEee8Zq66InjTTSxkLMzy+eV6VajWolibTZiIXFkdri7cxk3H3PdOw5c2/sqkXMHHk0HjrejMrY7jh372Ak0Yipoyfi+MxCzC00onlyyjMwnPU+Lz5tLj5nLd3H2ZhrRFRqAzE6Pha7W5z/4sM1Gw/PXRo/Xv/ZuP68wRXhOhb7z39cPH3sgfj4+26JI4O1OLH2HAdG4sAZo5FOHo3DJxqx0GxGJJWoDQ7Frt1jMTaQrHpMFxpLE6zBGJ0YjV2jtaise55t8fmrDcfuyU/Hu39vJJ6+5+74xBcidk9UIk3TmDtxIo4cn43ZhWZEUo2h8Yk4Y9dANGZOxOGjMzG70Iw0qUS1NhR7D4zHiM6ii+bn5yNJKnHxxRfG9PT0hhOhtaanG3HxpRfHHXd+K+bmFmJgoLbh8f7u7z6+6bGe+9znbHq8sWjGy88fj8ZkhmBaMjcTP/LYifjYXYeWj2fSBG2x8uuoGXf8rzfGDR98MJKJi+MHfuH/ildcuSuuecEz43uf9vz4sScNxuG/+Y143Z/eG3sq0zHygl+NP3v5edH40u/Hz//Xk2vr1QvjVe/4n/GqiFj42p/E6379U9FcOnyyL57zS++MF4wOxNyj347P/fWfxh/e9GhM7B6ISjRi8lAa5z73VfHa658Yl+wfiOmHb49//PCfx599+uEY21eN6aO74yk/8VPx3EvOiv27xmNsKI0TD90RN//1e+M9Nx+OiV0Dq8JjdN9I/H+/9fPxypmISKvx5J9/V/zydw/H3Gd/K179rltiIYmIse+K19/4e3FN5c74419+W3zsUBoX/Oh/jP/6gr1x/OPviJ/942/FRHV3HPz+H43nPf7ieOyZu2O0Mh9H7/67eOfbHzz9fV5+mNNI00ZMHoo4/3k/Hr9w/RPior3VOPHgN+MzH3xvvPeWo7F79+CaaV4zpo5EPPGnXx3XnzcYcfy2+Ks/+NP40BfvjsNzg7Hv/Evjyr2H4tsjQ1GdHGl9jr/24aj9wC/G6595XpyxeySq85Nx/zc+Fx/44w/EF2YGojq1+Jg+55Kz48x9EzFSmYvD99waN33offEXtxyJXXtWnNFGn79daRyfuSh+5JUvju8ZfjjSL38h/uLwQAwcn499z3hZ/OQLr42DZ09EMvVwfOOjvx/v+NCdMfq4743X/dJ3xdXn7Yrq7GQ8cu/n4o/e+f64Y3BUONE1U9Ozcf7558f8fCMWFha2+N5JnH/+eXHfvfdGrVbd9Hgvfen3tjzCBz/4V9FoNDY93veeORYDMyeiOTe7/H5v+tod8f3nPCYev3s8IiK+fPR4fOC+h+JXDl60/DaDaRrXnzkeH3pkNmq1qmiCdln7lTQ4sSt2Ne6MT//TvfHDV14alT1j8cD/vj0WnnhF7D54MM6dvyMerkzENVecHZW0Ebd+4asxmT7u5MHm4tjDh+L4QsTCo1MRlYhYfk6oxvBQGsemI/Y85tJ49qtfG80H3xA33lOJ0dm5OPeHb4h/96JzYiAaMTM1H+NnXxHPf83FceH4W+ONf/NwJPN747JrD8ZFIxHzU8dicnok9px9MJ73k6+N9KF/F398XzX2Dq3OjpG9++LcSGP68OSq309GJuKc3WkcOnGaByNtxvTsGfGk51wXV45ELMxMxrHZoRhrTMeRpTLa7D6vOM7Mkdk452U3xA0vOTdqC8fj4UNzseucK+NFP/tvYvd/qcdvfa0R+1cWQ2M2poavi+ufPBFJOhtfee9/jz+6ZS4O7BqPx4ynMffIrfG5hyoxOpLE5InW53i4ORf7Rg/E/oG5OPboTAzt2RfnP+H6+Ln9M/GGG/4q7okL4rJrD8bFIxFzJ47G0XQ09l/wpPi+n7s8LvnDN8dbPnX0VIhu9Pm7u7buYWscn46zXvrLUf/BC2IomjE3dTxmh/bHWHoipoefGq/9198b1w43YvLBe+P+uZE4Y99AzB5vRrKvG0u3sGh+fj727dsb8/Ozy5u0s0rTZuzftze+dee3lidUGx3vyJHDGx6n0VjY9HiPnxiOxtTxiOapJ5WXXXkw3vjZz8X/fdG5Uask8Zbb7okbnvLkaM4dO3Xghfl4/MRAvP+++UjTVDRBe6z/Opo/Ph2z5zw+fuAZj41qRDQffSS+9cUH4psLB+OKs6+KJ57xl/HBo5fF1RdVIxp3xi1fPhLJUqs0740Pvu3N8YEHI6qDw7F/90Akh5b+7JH40JtfHzfetiee//o3x09dvSee9OQL493fuCMmx54RP3f92TGQHop/+G9viXfddCzOfN7r4i0/cXVc8pIXxRP+5nfjC0unmj4cH/n1G+LG2/fGC17/H+Inr9oXT77uwviDP70nmoOb7L1ac7/XPYe02r8TK17E04fjw2+9IW68LY3a0FBUa9ee/j4vHaMxG5PDT41/9bxzorZwW/zJ698e77unEQee+wvxmz91dVz33Gvjxls+EwvDpzalpwuNaJx1TpxTSyKaD8Q/f3UyRsfGo5qksbBQidEzzo391TRmj9wfR1ue41js3T8ed//J/xP/8sZqjO+aiJHd18bP/tor4vFnXR6P2/OX8e0jp97vo2+/IW68bTgu/9Ffin//fRfEwe9/YRz8xB/GV5eOvdHn75t3rlnGa8bcyNPjR1/8HTEUx+KW3/v1eMff3h/zleEYH0+juu9pceZgEunc1+M9b/rN+JtDaSS1kTiwfzQGQzTRPY1GMwYGarGwsJB5aW5Js9mMgcGBaDSby++70fFOTZNanUNj0+Ptj7lozs5EpKci7PJqLX71O58Rv/qpT0dEEr/6nU+Pq+Ynozk3c+rASSX2J+ny8UQTtEW6IhSqcckr3xp/9soVf9o4HJ/90Gfj4UercdM3Xh4HrzgvnvykffHh+6+Kg0NJNG+/JT7/SCUqQyuPWY3xvWMxXouIdH7F8dOIqMTI0LG47fZHo3n1OTGxezySxkKk33FRXDSQRHrsK/HxmydjzxmD8eg/fDa+9i+uiutGL4hLz0rj83et/BiVGBk8Gt+87VA0rzo7JvZMRLLiyWb9vVz/Gy3fdN2kae1vVGJs73hMVObiyMzK39/oPp+0MB/ppRfHxYNJJMkl8arf+J141Yo/bh44I/anzXg0TZcnO4v3JVkRgYuhlzbnY/LoBfGD/+EX4/rdC/HZd74ufnNVpJ08x1ozZo5V45KX/WL85AsOxhlDK47VGIrhwbUnWYmx3c2442Ofjm+85IK4cvw74uIDafzzgysfnBafv+b6B7JywaVx6VAS6eQX4yOffCTGztgTw0kaabMRzfu/HP/0wAvi3HOvjJ9+x9vjmTd/Kv76L/82vjTZjD3DndjNDhtJYn5+PtK0uvzccfPNn9/0PZ7ylCcvvmeSnFyCW/kPsPXHi4hNl/6W/myj4zUX5iNN51dFUzp5OBpHj0ZSqUSaRiw8dE80qmvCLKlEI6ksH89GcGiX9NT/pI1GzC/Mx8zko3HP7V+Nmz760fjf316IvaPH4+Z/uDX+jyuuioue8pR45j0HYzwW4vab/ykeHqhGJV2KrySSZHFakKbRanQTaUQsLJz8Ak8qkbQImCxf34vHWdj0OJsdL42ItNk8uf+oFgMDaavT3fBY6VbucxqRJpWoREQ6d3fc9OEvxgMrVgPSE3fEieHFjdfL716pRvLwA/FgI40DtbPiqit2xQc+NRuj49nOMZ2djrkrXx2vfekVMX7itvjoez4eX59+bLzg1S+Ig4MRrUZyaZpE0liIhTQikiQqlRYdGes/f+ucvK+RLm7YT9OINJJIoxoTY3fHe9/01rj7xS+OlzzrCXH5d/9AXP6UJ8b/+8a3xocPj8W4SxXQJZVKElNT0zE+Prq8nPbsZz9r0/c5duzoyfetxNSJ6aicDJeNjheRbdK00fEemlmIMwcbp67JFBFfnZ6Lt91zON7w1OtioFKJN33mH+OXztkbjx9b8S+hShqPzDaWj2fSBG2xMhSacfuf/Urc8MEHIyqVqNVqMTwyFLvGqpGkgzF189/HLT92VTzj0hfFq84fjlj4RnzqHx+J4aGhmDs+HVMLacTw/njseYNx4nNHYmpgJPbuyjA5SCoRd90ed8w/I66euDqe85SJeNdNR+PM5z0trqglkU59O26/PzJcEqDFktumb5tEMn8sjk6nEROPicsunYjZu462eMu1v3HyMZvb7D43F7cgJGNxYP9gzN7ViMp9d8VdjafF5bWJGHzk5nj/394bM5FGbeKM2FuZisbQQAykKz4flVoMH/lC/P0/vyyueNJIXPUjPxOvPPaH8f5b7ompiFNLoi3vXhqNhYhdZz0mRpOIhTtvij//2GfjaGUyrnrlyWhadd+qUa2mMXV0Ns54zpPi4lpEOv1A3PNImu1xX/M7zXvvirsbT4vLJh4fz336X8d/+dQjcTSqMbJ7LEYrIzHWuDs++Z7/Fp/48/Pi5b/y7+MVl5wf1z3hjPjAR49FWuvKRbwgBmq1OHToUIyMDC/Hy6FDh07zXouq1YhHDx2OWq22/LzT6ngRK/6R0cLSn210vC9NzsRV+9KIFcf7y8PTccOTr42DU49GpGnc8ORr4/1f+2pcvfICakkSX5hsRq02aHkO2mf919HA6HjsGV3xUpmmkUY1Rha+Eh/9h0fi6S88I0ZH0pj54k3xmcMDMbS7EpF8K/751pn4ridOxHe+7u1xxZH5GJq5Kd5yw/tics3x133pJtUYOfGP8Rcff34cfMFZ8Z2v/fW45jXzMTA6HLWYizs+8pH4QnNg/SUFWk50si7PLd6nocod8Y+3HIlnP3tvPOE1b4nf/aGpqIzviWTDd1yaMFVicMP7/P6YSh6Mex5oRHrpWDzt594UJ/7zG+LdX7kp3vep58S/fdYZcd1r3hjv/rHJmEqHY3x0Lv7+138x3n1nLXatWjJLYnh8Kj5943vimu/4l/GUfZfG9/2fb4yXngyrZLmaWuzEStNIqhFH7rwrDjcvjv1X/Ui8+U3Xxf1To3H+WIsHqLIvXnTDO+Npk80Y3zsWg9GI+//+E/GlRrbHfbUkqoc+Ex/4zPPiF79rXzzjX70trv3x4zFTGYnhr/9B/Nz7z4s3/+qzY/jRh+PQVC3OOL8SkU7HQw8ei6SabHlvCWzXwGAtHnjgoTjrrMdEs5n9H11LX3sPPvhQjI4Mn4qcDY73pS99ecNjNRqNTY/3iSNpvGxPxFDaXP7ie8M1j4/GoQejcWJx4/fj0ma84ZqrY/7uby6dYMw0Iz55OGJwbEA0QTu13vzcIqZGkrjto5+M269/eVxanYzP/d0tMTVci11pEsNj03HTu/9HnP2al8ezD54Zu3dHPProfAwMRKTzpz+BgbEk7nzPf4y3Hvnh+NHnPj4u3FeL6Qdvjc9/7M/jT/72gRidqMSJtfW17jgbP+mt/+3F5bTBsYiv/8m74nfTV8RLr7swHrNnVzSmj8YD994XX7/9aNRqEc25Vh9ns/ucxGDtaHz8f/5hnPPql8RTL1yIyaPzURutxNd+/+3xlgd+IF72PVfHxWeOx3hjOg59+854pDkc1WhGmq4ZH1UGY/fUzfGuNzwYz/q+F8azr7kkzts/HkPJQkxPHor7vv3N+NKDLaZwaRoxMBRDt/9FvOPGgfjxFz4xLrzgcXFGLMT05ENx+123xr0zK/Y4pXPx6EOTMXhgf8TxB+NLn35/vPu9d8TQaDWmjp/+cV+rOrIQX3n32+M3Hvyh+MHvviK+48B4jM4cibuPNWO8cjzuv/dEXHbOOXHhgYU4/ujt8emPvy/+6JaFGB8fEE10TbVSiSSJuPvue+Occ87edBlt1ftVq3HXXfdEkkRUV4R+q+M97WlP2/RYR48e2fR4xyuD8b8eacYr98byd9DNffvrq47RmDy8eB2n5ROsxXsfqcZ0dSDGTx4veeHzn+0rC9qiGVNHj8eJhYja6HjsXXehnMWLFE7OpjF+zWvibf/mO2P/Ax+NX3n9++KhseEYWP7OuYU4cXwmZhaaixdXrA7GxK6hGIiFmDw8FTNpJUZ2j8d4LWJh+kQcnmpEMjgS+yeWvuOtGXPTszE1sxALzTSSajUGh4djbLh6cn9M1uO0Nnd8Mo7OppEMjcT+8RVvmzZi+sRMTM81o5GmkSRJVKrVGBgejomhSsuPe+qh2+A+JxHpwnwcn5qN2YWIkV3jJ3/23Mn7OLsQC4000iSJarUaQ6MjJy82udGnqBHT07MxM9+IRuPkpOnkz68aGR2J4epG55jG/MxMnJg5+fGW368Wo2O1mJu6LH76vy/9iJQb4sZvNiKiEgNDQzE+OhDVJOPj3uoxSk/e17nFjx1JJaqDQzEx3IwTJ+ZjvtGMNF286OjA0FCMj2xwgU/ooGYzjePHT8Q5554Te/bsPu2lByqVShw+cjTuv+++GB8bi0pl9ddtJ4534viJ+Jm90/HM0elVlx5ofcBqfGJqJP7HkZFVxzNpgrZJYmTXRIyc/NXqr600Zo834uqf/U/xmsdVYmj3RIwkk/GZP/9ofGtgMHat/BbxpBqjE2MxuurYi8tg43snYnzp12lEdXg0Dgwvf8DlDdUDw8OxezhWW/7zrMdpbWBsPA6MtXrbSgyPjcZwi2Wrxcdi/cddttF9TiOiWovxidqa99vgPsbax32NpBLDoyPR4t1io8d4SW1oOHYPtXq/hZhd9etKDE+MrvjBwkvHyfK4t/r4SQyMDMfukVhn165137p32s8fdEKSRIyODsd9990X09MzceDAvuXlsqWvyZW/fvDBh+LQoSMxNjYSSbL+67YTxxsZHY7fPhLx7bmIl0+ciOGlC8Etve3J481ENd57dCQ+cnw0xsaGVx1PNEFXNKOZ7ImJ4UYMTkxE5fg98ZkP3hi/8/mZGB+tWUoptNZ7oXxK6TeVSiVGR0fi2NGjceTIkZiYmIjRkeGonvxxJo35hZiamo7J48cjSZIYHxuOJNl4/10njjcyOhIfm6nGp6YG47uHp+PqwZnYf/IyA482qvHl2eH49OxITFUGY3xscN3xkudd/0xf2tAVzZg9PhNT82lEZXHpZmy4kvEikuRbI04cmYnZtBLDEyMxWjv9e0CZNRvNmF84+bMYT16DLKkkUatWYqBWi0p1a4vIeTmeSRN0TRKDYyOxakHFUkpJVGJ09+jJ5UVTJkgqSQwODkSLBeSIOM0yeo6P5+KWAAAZmDQBAGQgmgAAMhBNAAAZ1LJeuRMAoJ8lt956q1ETAMBpuNo+AEAGtU9+8pO9PgcAgNwzaQIAyCBJffscAMBpmTQBAGQgmgAAMhBNAAAZiCYAgAxEEwBABqIJACAD0QQAkIFoAgDIQDQBAGRQ6/UJAOxEkiTbfl8/EAHYCtEE5MZ2Amgn2XO6jyeqgJVEE9Aza6Ol24lyuo/XKqqEFPQvP7AX6JpeR9JOLZ29p03oTyZNQEetDKWip8bS+S/dJ/EE/UU0AW1V9GlSFuIJ+pNoAnakHyJpI+IJ+otoArasTEtu7SCeoD+IJiAzsbQ58QTl5rvngNNajoAen0eR+E47KB+TJmBDYmn7Vk6dhBOUg2gC1hFL7ZOGcIKyEE3AMrHUGcIJykE0AWKpC4QTFJ9ogj4mlrpLOEGxiSboQ2Kpd4QTFJdogj7hGkv5IZygmCq9PgGg81ZOlrxM58NSOAHFYdIEJWYZLt9MnKBYRBOUVBGDKcvcpUj3JwvhBMUhmqBkihRLayMpSzgU6f5lJZygGEQTlEjeg2I7kbTW0vvY2A50mx/YCyWRJEku46EdoXTaj1GSgPJDfiHfRBMUXN6mS92IpE0/fs4ej0xaTM9W/3Gh7g2UluU5KLC8BMLKl/pev8CvXb7r9WOzqQ0eq7W/u26SJqKgJ0yaoKDysByXp1jaSB4ep1VO8zid7nzXTfIyHBNoD9EEBZOHCUrR9t7kIpwyPlZb/fwufy628DGA7bE8BwXS62AqWiwtSdO0d49dhx+rpaMnERFLcViwzw8UhUkTFIBYao+uPY47eJyWpmJJbO88TZ6gc0yaIOd6GUxliaUlSxOn7QZJhg/QiaNu7RRO3i5PnnJwTlAWJk2QY73ai1O2WFqr7SHapsdp7ed7p3Fn6gTtZdIEOdXtYCrCd8K1y8rLEmz7nhbgMbLfCdqr0usTANbrVTClaVr6YFopTdNMPyR4zTt1NTy2fH4tpCf/S2LjC2i2QyePDXkgmiBnehFM/RZLK2UOpy7HUkT7910tx5Nwgm0RTZAjvQqmfrdhOC2FUhceo80+9+3OkE6EUy6uhQUdJpogJwRTjvRgqrSRTp1FpydOUEaiCXKgmy9eSQimDfUolno1pWlXOK08fzFGmYkm6LFuXoep7JcS2JYkWfyvZx/+9MG0tIm7k+cAnJ5ogh4STD3U41haPIXe7wNavixBGx8L0ybKSjRBjwimHmkRS714ed9qMHVy2rSTcMpD+EG3iCboAcHUZUuhtEkUdPPxyWNotHviZNpEGbkiOHSZYOqiTV60e3EF9J1+7nfyg3y3cvysRBH9RjRBD3QrmMRSiz86edvtx6aXP3h5K5YmRFkfn83eaqvHgrwTTdBF3VqW6ctgytlUadXHb3MwdXLaFCF2YCP2NEGXCKYO2WSv0tI1qSJ696Ni2h1M3boHaZpuuvyW9e+zvU2UiUkTdIFg6oAcLsGtO48OLsl1etq09PiaOMEpogk6TDC1UYtQapVOeXgcOvl57/TFLpc/zgbTpq1Ojiz3URaiCTooj99aXkhJsmEk5PGFuEyf96VwWvs4l+X+wVaIJiCX1k4z8hhHrXQrmDp9+YGIWJzstelxN22iDEQTkEtFe3EtyiUFtmPltKlMUzTYKt89B7BDvQqmruxtWjHx2+l3wflOOorOpAlgm8o8XVrrdJcggH5g0gQl4V/x3ZMkyfIyVa+DqVvfSbfy4+30/f09pahMmqBklqcfBdsTVAT9NFlapY0bwqHITJqgRFZOPpamIexcniZLG+n0Z7rdf5f83aSITJqghJbDKUyedqIok6VuL9HtVNHOF5aIJigx8bQ9RYmltTp53SahA5bnoC9Ytstm5WNTtGAq4vn6e0jRmDRBHzF5am3li7dHA9iIaII+JJ4WlS2WuvKjVaCPiSboY/0WT62Wg8p7b9tLjIFoAmL1i2FRf1BuK/0YSUWaNvkhvhSNaAJWWfvyVaSI6sdI6gbbtWGRaAI2lceI2uy7rkRSZ6ZNHlcQTcAWnS6iNny/LcRVlmN6ES8HS3QUiWgCdiTLS93KjebtPC6ba8e0qSj7o6AbRBPQcV50u88VvKH9XBEcoMR2Ek7dnDK5OjhFIJoASmonwdPNYDKJpChEEwCr2McErYkmgBLb6t4mwQQbE00ARERvg2np0gOQZ6IJoORON21KwoQJsnDJAYA+JpYgO5MmgD6wdtqUx+mSJTryTjQB9JmlLMlTMEERWJ4D6CN5my5BkZg0AfQBi16wc6IJoOSWpktL/+WZfU3kmeU5gJKydwnaSzQBlJC9S9B+ogmgREyXoHPsaQIoCcEEnWXSBFBwYgm6w6QJoMDKGEy+g468MmkCKKAyxhLknUkTQMEIJugNkyaAAnEpAegdPtsxnAAAGFZJREFU0QRQAKZL0HuiCSDnTJcgH0QTQE6ZLkG+2AgOkEOCCfJHNAHkSBKnluP6OZhcq4k8Ek0AOWG6BPlmTxNAj4klKAaTJoAeEkxQHCZNAD3iUgJQLKIJoMtMl6CYRBNAF5kuQXGJJoAuMF2C4rMRHLbB9WPYCsG0Pa7VRN6IJtgmT+acjgtVQrmIJoAOMF2C8hFNsE2WDmjFdAnKSzQBtInpEpSbaIIdMG1iiekSlJ9ogi1qFUnCqX+tXI4Dyk00wTakG/w//cV0CfqLaII2sEzXX0yXoD+JJoAtsNkb+pdogjYxbSo3lxIARBO0mXAqH9MlIEI0QVt5US0f0yVgiWiCNrNMVw42ewNr1Xp9AlBWwqm4xBLQikkTdIAX3OISTMBGRBPASYIJ2Ixogg5ZevG1SFcMgil/fO2QN6IJtmCr+5S8CBeDYMqvNPWZIT9EE2zRVp/C0/Av5rzyHXLAVogmoC+5YCWwVaIJusC0KV8EE7AdognoK4IJ2C7RBF1i2tR7ggnYCdEE9AXBBOyUaIIuMm3qDT90F2gH0QSUmksKAO0imqDLTJu6RzAB7SSaoEeEU2cJJqDdRBP0gBfzzhJMQCeIJugRy3SdIZiAThFNsAVpmgodgD4lmqCHTJvay5QJ6CTRBD0mnNpDMJVLEouTXcgT0QQAkIFoghwwbdoZUyagG0QT5IRw2h7BBHSLaAIAyEA0QY6YNm2NKVM52QROXokmyBnhlI1gArpNNAEAZCCaIIdMmzZnygT0gmiCnBJOrQkmoFdEE2yRnz8HnWMTOHkmmiDHTJtWM2UCekk0Qc4Jp0WCCeg10QQFIJwAek80QUH0cziZMgF5IJqgQPo5nCg/m8DJO9EEBdRP4WTKBOSFaIKCWQqIfgongDwQTbANvb5WU7+EkykTkCeiCQqqX8IJIC9EExSYKQxlYRM4RSCaYAfyMOUp63fUWZoD8kY0wTbl6V/FZQ0ngDwRTVASZQonUyYgj0QTlEiZwon+YT8TRSGaYAd6femBVpbCKW/nBVB0oglKqMiXI7A0B+RVrdcnAHTG2nASIuSRpTmKxKQJdiiPS3QrFWnqZMoE5Jlogj6Qhk3iADslmqCP2CROnliao2hEE7RB3pfoVsrrcp2lOSDvbASHPmSTOL2Wt2iHLEyaoI/lZepkytSfLM1RNKIJ2qjX8bEdNokDZCOaoE2K/q9mm8TpFn/HKCp7moBl9jrRLUX/Rwb9yaQJWMeSHcB6ognaqEiXHsjCkh3t5tpMFJnlOWBTluwAFpk0QQeUcTLTqSU7lxsAikI0QZuVfenBkh3bZWmOorM8B2yZJTugH5k0QQeUbUP4RlYu2fXD/QX6m0kTsGMb/TgWEyiWWJqjDEQTdEiappEkSV+Fw9r7mmzyZwBFI5qAjlkZSgKqf1m6pSxEE3RQP06bNrJRQNEfLM1RBqIJ6Lq1AWUKVV72MlEmogm6wAUcN9dqCuXxAvLGJQegw/wre2OtYnLtZQws5RWXKRNlY9IEXWLatDU2kQN5Y9IEXeBf2zuThgtpFo0pE2Vk0gQUih/hkn+ilrIyaYIu6ZcfrdItJk/5ZspEGYkmoNA2+hEu9IZlOcpMNEEXmTZ1xsqpE0CniCagNCzX9ZYpE2UnmqDLTJs6y3Id0CmiCSgdy3XdZ8pEPxBN0CNe0DvPcl13eHzpF6IJesC/yBd1Yxpkua47/J2mH4gm6BF7m7rHcl3nWJajn4gm6DEv5N0jnICdEE3QQ/6F3hvCqT1Mmeg3ogl6zDJdd3mJB7ZLNEFOCKfusUy3c6ZM9CPRBDngxaf7hNP2edzoV6IJcsIyXW94zLdH6NOPRBPkjBfx7vGyv3WW5ehnoglyxItR91mmy87jRL8TTZAzlum6TzhlJ+zpZ6IJcqifwilPwZKX88gjy3IgmiDXvIh3jxzYmGCCRaIJcsqLVPflaeqVFx4POEU0QY710zId+SXgYZFoggIQTt1j2nSKZTlYTTRBznnRohcEE6wnmqAALNPRTf6uQWuiCQqkrC9meVsSy9v59IIpE6wnmqAgvIjRDZblYGOiCQqkzMt0eZzu5O18Ok0wweZEExRMmcMpT/otHfydgtMTTVBAwolOMGWCzYkmKKgyhlPelujydj6dYlkOshFNUGBlDCe6SzBBdqIJCq5s4dQv05088DjD1ogmKAkvgJ1R9ogzZYLsRBOUwNILX5lf3Gkvy3KwdaIJSqJM4VT26U6vCSbYHtEEJVKmcKIzBBNsn2iCkilLOJk2tVcSggl2SjRBCZUlnGiPpb8Hggl2RjRBSQknIgQTtJNoghIr+gulJbqdEUzQXqIJSq5sF78km6X9S4IJ2kc0QR8ocjjlYdqUh3PYChu+oTNEE/SJIocT2Qkm6BzRBH2kqOFUtElPrwgm6CzRBH2mqOEUIZw24hpM0B2iCfrQUjgVKULkQGu+Qw66RzRBnyridZws060mmKC7RBP0saVvSS/a1KlI59opggm6TzQBhZo6SQTXYIJeEU1ARBRr6tTPy3Q2fEPviCZglaJMnboZTknkY8IlmKC3ar0+ASB/lsMpSXIRC/3O/iXIB5MmYEN5X67rh2U6+5cgP0QTsKm8L9eVNZxcsBLyx/IccForl+si8rG/Z61O7TvqxX4msQT5ZNIEZJbXqVNZ8sJ0CfLNpAnYkrxOnZaW6fJyPlslliD/TJqAbcnr1Clv53M6pktQHCZNwLblberU7k3hnZ5ciSUoFpMmYMdWTp16PekpwnfTmS5BMZk0AW2xMgB6PXnK8/4msQTFJZqAtsvDsl3ewslVvaH4ktRXMNBhS/EU0aNrHnXx/TY8lqdaKDx7moCOW/ljQLq976mXe5zsXYJyMWkCuq4Xk6fl5bE2v+2m7+/pFUpFNAE91c19T1ljaCdLehFiCcpKNAG50K14Ol04bSeYxBL0B989B+TC2u+4i+hMQC3tcdrpRu+V+6TEEvQHkyYgl1bGU0T7A6rVxClLSIkl6F+iCci9tQEV0Z6IWhtOm0WTJThANAGF0+6I2mifk6kSsJJoAgqvHRG1csokloBWRBNQOluNqKVgsgQHbMZ3zwGlszZ6kiRZd1XwVktxaZq2DC6ACJMmoA+t+868FpHlqRFYy8+eA/rOyp+Ft9GfA6wlmoC+JpCArEQTAEAGogkAIAPRBPQlm72BrRJNAAAZiCYAgAxEEwBABqIJ6Dv2MwHbIZoAADIQTQAAGYgmAIAMRBPQV+xnArZLNAEAZFDr9QkA0D+SJNnS25sKkieiCYCOaBlI9TYcowVxRTckqb9pQJ+wn6lz2hFI21YXTXSHSRMAW9LTQIIeEk0AbGpdJNV7chrQc6IJgJZWxVK9Z6cBuSGaAFilULFU7/UJ0E9EEwARUbBYWsEmcLpFNAH0uaLGEnSbaALoU2IJtkY0AfQZsQTbI5oA+oRYgp0RTQAlJ5agPUQT0Bf69UeoLAdTvaenAaUgmgBKKkkSsQRtJJoASsZ0CTqj0usTAKB9BBN0jmgCKAnBBJ1leQ6gBOxfgs4zaQIoOMEE3SGaAApMMEH3iCaAghJM0F32NAEUjA3f0BsmTQAFIpigd0QTQEEIJugty3MABWD/EvSeSRNAzgkmyAfRBJBjggnyQzQBfSFN01N7ggqiaOcLZSeaAPKs3usTAJaIJoAcsiwH+SOaAHJGMGVU7/UJ0G9EE0CO2Me0NWma9voU6COiCSBv6r0+AaAV0QSQE5blIN9EE0AOCKYtqvf6BOhHogmgx3K/j6ne6xNozX4muk00AeRBvdcnsIF65PfcoMtEE0AP5XpZrh75PTfoAdEE0COCaZvqvT4B+pVoAuiBXO9jqkfuw8R+JnpBNAF9I3c/tLfe6xNooR75PC/IAdEE0GW5XZarRz7PC3JCNAFQnGCq9/oE6GeiCaCLcjllqkf+zmkT9jPRK6IJoJ/Vo1DBBL0kmgC6JHdTpnrk63xOp97rE6DfiSaAflSPQkaIpTl6STQB9Jt6FC+Y6r0+ARBNAF2Rm6W5euTjPLbBlIleE00A/aIexQymeq9PABaJJqCv9OKq4Lm4Cnk9Ch0fpkzkQa3XJwDQF+o9/ri9+vg7Ve/1CcApJk0AZVVfc1tQpkzkhWgC6KCebQCvr7ktonqvTwBWszwHUDb1KE1wmDKRJyZNAGVSj3IEU73XJwDrmTQBfWfpO+g6PcXo6tJcfc1tCZgykTcmTQBFV19zW3T1Xp8AtCaaADqga1Om+prbkjBlIo8szwEUVT1KF0uluz+UikkTQBHVo7SBYcpEXpk0ARRJfc1tmdQFE/lm0gRQFPU1t2VSF0zkn2gC+lIvfnDvjtTX3JZJXTBRDJbnANqs7TFWj9LGUoRgojhEE0An1Nt4jHYcK2/qizeCiSIRTQB5U19zWzb1xRvBRNGIJoC8qK+5LaP64o1goohsBAfIg/qa2zKqL94IJorKpAnoW936wb2bqq+5Lau6WKL4RBNAL9TX3JZZXTBRDqIJoJvqa27Lri6YKA/RBNAt9TW3ZVZfvBFMlIloAui0+prbsqsv3ggmykY0AX2t3ZvBV10NvL7mtuzqizdiibJKUn+7gT7X8Wgqu/rijZcTys6kCaAT6r0+gS6oL96IJfqFSRPQ99oxaWr5Q3rrOzpkftUXb7x80G9MmoC+t5N9TUuxtPS+K49TuqW6+uKNWKJfiSaAbVgbS62s/LNCB1R98UYs0e8szwFE9iW6LLGU5f2X1bd1mM6rr/6llwoQTQDLNgunncbSZseMiN7H05qP76UB1rM8B7CJTsTSkp4u3635GCIJTk80AbTQyVhqZcOA2kx9Cx9gzduKJNg60QSwQrdjqZWsHztzXG3hmMDGRBPAGkUJjKKcJ5RFpdcnAJAXIgTYjGgCAMhANAEAZCCaAFZY+pEqAGuJJgCADEQTAEAGoglgDUt0QCuiCQAgA9EEAJCBaAIAyEA0AbRgXxOwlmgCAMhANAEAZCCaADZgiQ5YSTQBAGQgmgAAMhBNAJuwRAcsEU0AABmIJoAMTJsA0QRwGmma9voUgBwQTQAAGYgmgAxsCAdEEwBABqIJACAD0QSQkSU66G+iCQAgA9EEAJCBaALYAkt00L9EEwBABqIJYBtMm6D/iCaALfJjVaA/iSYAgAxEE8A22BAO/Uc0AQBkIJoAADIQTQDbZIkO+otoAgDIQDQBAGQgmgB2wBId9A/RBACQgWgC2CHTJugPogkAIAPRBACQgWgCaANLdFB+ogkAIAPRBNAmpk1QbqIJACAD0QQAkIFoAmgjS3RQXqIJACAD0QTQZqZNUE6iCQAgA9EEAJCBaALoAEt0UD6iCQAgA9EE0CGmTVAuogkAIAPRBACQgWgC6CBLdFAeogkAIAPRBNBhpk1QDqIJACAD0QQAkIFoAugCS3RQfKIJACAD0QTQJaZNUGyiCQAgA9EEAJCBaALoIkt0UFyiCQAgA9EE0GWmTVBMogkAIAPRBACQgWgC6AFLdFA8ogkAIAPRBNAjpk1QLKIJACAD0QQAkIFoAughS3RQHKIJACAD0QTQY6ZNUAyiCQAgA9EEAJCBaALIAUt0kH+iCQAgA9EEkBOmTZBvogkAIAPRBACQgWgCyBFLdJBfogkAIAPRBJAzpk2QT6IJACAD0QQAkIFoAsghS3SQP6IJACAD0QSQU6ZNkC+1Xp8A0L+2GgRpmnboTABOTzQBXbMukupbeOf61iJLYAHtlqSeWYAO2VEk7dSaj1Xkp7okSQp9/lAWJk1A2/Q0ktZa87HXnpsIAbbKpAnYtlxF0lbUV/+yCE+Dpk3QeyZNwJasCqV6z05jZ+qrf2kKBWQhmoDMluOi3tPTaL/66l+ujCgBBSyxPAecVmlj6XTqizd5eZq0RAe9ZdIEbKhvY2lJffFm6XEQLNDfTJqAdfo+ljZSX7zp5dOmaRP0jkkTsEwsnUZ98cbkCfqTaALE0lbVF2/EE/QXy3PQx8RSm9QXb7r1dGqJDnrDpAn6kFhqs/rijckTlJtJE/QZwdQF9cWbTj69mjZB94km6BNiqcvqizedeooVTdB9luegDwimHqgv3nQyboQTdFel1ycAdJZg6rF6ix9s3AZiCbrPpAlKLEkSsZQHdVMhKAN7mqCETJdyqr54086nXTEG3WN5DkpGMOVYffGmE8t1QOeJJiiRvgimehT7/tUXb9oZTiIMusPyHJREafcv1TP+XtHUF2/a8RRsiQ66w0ZwKLhSTpfqm/x67Z8VVT1sEIeCMWmCHFm5zJLlS7N0wVRfc9vqzzf6s6KqL97s9KlYfEHn2dMEObLyRS9JknX/rVS6YIrIdl+yvE2R1Bdv7EuC/DNpghzaMIjqG/x/2dSj9X2vr/j/zd63qOpbmzi1Ci1P6dA5oglyrLSbu7Oox/pIrLd4u1bvt5Xfz5v6YvhkmTytffq2RAedZSM45NiqF896T0+l++qxvT1MG739Vo/TqWNkOI74gXwyaYIC6NtwilgdT/Uenke08eNvdpz6qVjeztOz4ILOEU1QIH27XFdfc1tG9cUb30UH+WV5Dgqkb5fr6lHe+1tfvPHz6CD/TJqggPoynMqmvnjTiadg0QSd4TpNUEBpmi6+KNZ7fSZsS33xRthAsZg0QcGZOhVIffGmG0+7pk3QfqIJSkA45Vx98aabT7eiCdrPRnAogaUXR/GUQ/XFm14EjHCC9jJpgpJZdSXpes9Og/riTS+fYkUTtJdogpISTz1SX7zJw1OraIL2Ek1QcuKpS+qLN3l7ShVO0D6iCfqEeOqQ+uJNXp9KRRO0j2iCPiOe2qB+6n/z/hS69PnO+3lCEYgm6FPiaRvqp/63SE+dpk3QHqIJ+px4yqC+eFPUp0vRBO0hmoCIEE/r1E/9bxmeJoUT7JxoAlZZFU8R/RdQ9VP/W6anR9EEO+eK4MAqa19Y10VURDlDqr54U+awEE6wM6IJ2FSrF9nCh1R9/W+VPSbSNG39eQMyE03AlhUmpDb4+GUPJKAz7GkCOmZbk436Nj7QBu/j6W09S3SwfaIJyI3tLh95GstONMH2WZ4DcsOLeXcIJ9ieSq9PAIDuEUuwfaIJACAD0QTQZ1x+ALZHNAEAZCCaAPqUaRNsjWgC6EM2hMPWiSYAgAxEE0CfsiEctkY0AQBkIJoA+pxpE2QjmgD6mA3hkJ1oAgDIQDQB9DkbwiEb0QQAkIFoAiAibAiH0xFNANgQDhmIJgCADEQTABFhQzicjmgCAMhANAGwimkTtCaaAFhmQzhsTDQBAGQgmgBYxYZwaE00AQBkIJoAaMm0CVYTTQCsY0M4rCeaAAAyEE0AtGRDOKwmmgAAMhBNAGzKtAkWiSYANmRDOJwimgAAMhBNAGzKhnBYJJoAADIQTQBkYtpEvxNNAJyWDeEgmgAAMhFNAGRiQzj9TjQBAGQgmgDYEtMm+pVoAiAzG8LpZ6IJACAD0QTAltgQTr8STQAAGYgmALbFtIl+I5oA2DIbwulHogkAIAPRBMC22BBOvxFNAAAZiCYAts20iX4imgAAMhBNAAAZiCYAdsQSHf1CNAEAZCCaANgx0yb6gWgCAMhANAEAZCCaAGgLS3SUnWgCAMhANAHQNqZNlJloAgDIQDQBAGQgmgBoK0t0lJVoAgDIQDQB0HamTZSRaAIAyEA0AQBkIJoA6AhLdJSNaAIAyEA0AdAxpk2UiWgCAMhANAEAZCCaAOgoS3SUhWgCAMhANAHQcaZNlIFoAgDIQDQBAGQgmgDoCkt0FJ1oAgDIQDQB0DWmTRSZaAIAyEA0AQBkIJoA6CpLdBSVaAIAyEA0AdB1pk0UkWgCAMhANAEAZCCaAOgJS3QUjWgCAMhANAHQM6ZNFIloAgDIQDQBAGQgmgDoKUt0FIVoAgDIQDQB0HOmTRSBaAIAyEA0AQBkIJoAyAVLdOSdaAIAyEA0AZAbpk3kmWgCAMhANAEAZCCaAMgVS3TklWgCAMhANAGQO6ZN5JFoAgDIQDQBAGQgmgDIJUt05I1oAgDIQDQBkFumTeSJaAIAyEA0AQBkIJoAyDVLdOSFaAIAyEA0AZB7pk3kgWgCAMhANAEAZCCaACgES3T0mmgCAMhANAFQGKZN9JJoAgDIQDQBUChpmvb6FOhTogkAIAPRBACQgWgCAMhANAEAZCCaAAAyEE0AABmIJgCADEQTAEAGogkAIAPRBACQgWgCAMhANAEAZCCaAAAyEE0AABmIJgCADEQTAEAGogkAIAPRBACQgWgCAMhANAEAZCCaAAAyEE0AABmIJgCADEQTAEAGogkAIAPRBACQgWgCAMhANAEAZCCaAAAyEE0AABn8/3QYRmM0gNHxAAAAAElFTkSuQmCC" alt="" />
再附上一朵小花的绘制方法:
# -*- coding: utf-8 -*-
# @Time : 18-9-14 下午3:23
# @Author : Felix Wang import turtle
import math def p_line(t, n, length, angle):
"""Draws n line segments."""
for i in range(n):
t.fd(length)
t.lt(angle) def polygon(t, n, length):
"""Draws a polygon with n sides."""
angle = 360 / n
p_line(t, n, length, angle) def arc(t, r, angle):
"""Draws an arc with the given radius and angle."""
arc_length = 2 * math.pi * r * abs(angle) / 360
n = int(arc_length / 4) + 1
step_length = arc_length / n
step_angle = float(angle) / n # Before starting reduces, making a slight left turn.
t.lt(step_angle / 2)
p_line(t, n, step_length, step_angle)
t.rt(step_angle / 2) def petal(t, r, angle):
"""Draws a 花瓣 using two arcs."""
for i in range(2):
arc(t, r, angle)
t.lt(180 - angle) def flower(t, n, r, angle, p):
"""Draws a flower with n petals."""
for i in range(n):
petal(t, r, angle)
t.lt(p / n) def leaf(t, r, angle, p):
"""Draws a 叶子 and fill it."""
t.begin_fill() # Begin the fill process.
t.down()
flower(t, 1, r, angle, p)
t.end_fill() def main():
window = turtle.Screen() # creat a screen
window.bgcolor("white")
window.title("draw a flower")
lucy = turtle.Turtle()
lucy.shape("turtle")
lucy.color("red")
lucy.width(3)
# lucy.speed(10) # Drawing flower
flower(lucy, 7, 60, 100, 360) # Drawing pedicel
lucy.color("brown")
lucy.rt(90)
lucy.fd(200) # Drawing leaf 1
lucy.width(1)
lucy.rt(270)
lucy.color("green")
leaf(lucy, 40, 80, 180)
lucy.rt(140)
lucy.color("black")
lucy.fd(30)
lucy.lt(180)
lucy.fd(30) # Drawing leaf 2
lucy.rt(120)
lucy.color("green")
leaf(lucy, 40, 80, 180)
lucy.color("black")
lucy.rt(140)
lucy.fd(30)
lucy.ht() # hideturtle
window.exitonclick() main()
一朵小花
使用Python画一朵玫瑰花的更多相关文章
- 用python画一朵玫瑰花
废话不多说,直接上代码 from turtle import * import time setup(600,800,0,0) speed(0) penup() seth(90) fd(340) se ...
- Python画一朵花
from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import Line ...
- 用python画小王八裤(turtle库)
一,采用Python语言如何画一朵玫瑰花 工具/原料 Python语言包 Win10 一. 准备 1. 打开界面: 打开python 2. 创建文件 二. 编程 1. 编写画图: from turtl ...
- 情人节,教大家使用css画出一朵玫瑰花。
情人节到了,给大家来一朵高端的玫瑰花. 在网上看到的一个canvas实现的玫瑰花,效果很好,但是代码被压缩过,也没有注释,看的云里雾里的. 今天我教大脚用CSS来实现一朵玫瑰花. 先看效果 首先我们画 ...
- 用内置的库turtle来画一朵花,python3
题目:用内置的库turtle来画一朵花 看了群主最后成像的图片,应该是循环了36次画方框,每次有10度的偏移. 当然不能提前看答案,自己试着写代码. 之前有用过海龟画图来画过五角星.奥运五环.围棋盘等 ...
- 沉淀再出发:用python画各种图表
沉淀再出发:用python画各种图表 一.前言 最近需要用python来做一些统计和画图,因此做一些笔记. 二.python画各种图表 2.1.使用turtle来画图 import turtle as ...
- python画樱花
用python画简单的樱花 代码如下: import turtle as T import random import time # 画樱花的躯干(60,t) def Tree(branch, t): ...
- python 画小猪佩奇
转自:python画个小猪佩奇 # -*- coding: utf-8 -*- """ Created on Mon May 20 11:36:03 2019 @auth ...
- 用python画 pareto front
用python画 pareto front 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2D pf import os import matplotlib.pyplot as plt im ...
随机推荐
- TIPTOP之分割split函数方法、getIndexOf、subString、replace、临时表创建;
范例(cnmq001): 原:每次查询都把数据全部查询到临时表后再筛选: 现:查询到临时表的时候,增加可行的筛选条件,再二次筛选临时表的数据,进行优化: 1)临时表创建: PRIVATE FUNCTI ...
- webSocket协议和Socket.IO
一.Http无法轻松实现实时应用: ● HTTP协议是无状态的,服务器只会响应来自客户端的请求,但是它与客户端之间不具备持续连接. ● 我们可以非常轻松的捕获浏览器上发生的事件(比如用户点击了盒子), ...
- X-Router软路由设置
一 内网: ip 192.168.0.1 掩码 255.255.255.0 网关 (空) DNS 202.96.128.68(佛山的)手动写入 二 外 ...
- Linux工具- Sysdig
Sysdig 是一个超级系统工具,比 strace.tcpdump.lsof 加起来还强大.可用来捕获系统状态信息,保存数据并进行过滤和分析.使用 Lua 开发,提供命令行接口以及强大的交互界面. 使 ...
- Java学习笔记【七、时间、日期、数字】
参考:http://www.runoob.com/java/java-date-time.html Date类 构造: Date() 使用当前的日期时间 Date(long millisec) 197 ...
- Delphi 图形图像对象组件
- webapi 可空参数
这里上面是一个可空参数的例子.请不要写成 public WapOutgoingResponse<List<PatrolTaskOut>> GetTaskPatrolHistor ...
- Can you answer these queries I SPOJ - GSS1 (线段树维护区间连续最大值/最大连续子段和)
You are given a sequence A[1], A[2], ..., A[N] . ( |A[i]| ≤ 15007 , 1 ≤ N ≤ 50000 ). A query is defi ...
- MyBatis Demo
什么是 MyBatis? MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架. MyBatis 消除了几乎所有的 JDBC 代码和参数的手工设置以及对结果集的检索.MyBat ...
- Linux配置python环境1,pyenv
安装pyenv sudo apt-get install curl git curl -L https://github.com/pyenv/pyenv-installer/raw/master/bi ...