codeforces 609E Minimum spanning tree for each edge
2 seconds
256 megabytes
standard input
standard output
Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.
For each edge (u, v) find the minimal possible weight of the spanning tree that contains the edge (u, v).
The weight of the spanning tree is the sum of weights of all edges included in spanning tree.
First line contains two integers n and m (1 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of vertices and edges in graph.
Each of the next m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ wi ≤ 109) — the endpoints of the i-th edge and its weight.
Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.
The edges are numbered from 1 to m in order of their appearing in input.
5 7
1 2 3
1 3 1
1 4 5
2 3 2
2 5 3
3 4 2
4 5 4
9
8
11
8
8
8
9
保证某条边e存在的MST就是普通Kruskal把e优先到了最前面。
先求一遍MST,如果e不再MST上,是因为形成了环,把环上除了e的最大权边去掉就好了。
(以前的LCA:用ST来RMQ,查询O(1)
(向祖先结点倍增其实和ST差不多,查询O(logn),维护信息灵活
(一开始想的是树剖,复杂度稍高
#include<bits/stdc++.h>
using namespace std; typedef long long ll; const int N = 2e5+, M = N*; int pa[N], rak[N];
int fd(int x){ return pa[x] ? pa[x] = fd(pa[x]) : x; }
bool unite(int x,int y)
{
int a = fd(x), b = fd(y);
if(a == b) return false;
if(rak[a] < rak[b]){
pa[a] = b;
}
else {
pa[b] = a;
if(rak[a] == rak[b]) rak[a]++;
}
return true;
} int fro[N], to[N], we[N]; int hd[N];
int nx[M], ver[M], wei[M];
int ec; void add_e(int u,int v,int w)
{
ver[++ec] = v;
wei[ec] = w;
nx[ec] = hd[u];
hd[u] = ec;
} int n, m;
int *cmp_c;
bool cmp_id(int i,int j){ return cmp_c[i] < cmp_c[j]; } int r[N];
ll kruskal()
{
ll re = ;
int i,j;
for(i = ; i <= m; i++) r[i] = i;
cmp_c = we;
sort(r+, r + + m, cmp_id);
//ec = 0;
for(i = ; i <= m; i++){
j = r[i];
if(unite(fro[j],to[j])){
add_e(fro[j],to[j],we[j]);
add_e(to[j],fro[j],we[j]);
re += we[j];
we[j] = ;
}
}
return re;
} const int LOG = ; int fa[N][LOG], mx[N][LOG];
int dep[N]; void dfs(int u,int f = ,int fw = ,int d = )
{
fa[u][] = f;
mx[u][] = fw;
dep[u] = d;
for(int i = hd[u]; i; i = nx[i]) {
int v = ver[i];
if(v == f) continue;
dfs(v,u,wei[i],d+);
}
} int lg; int queryMx(int u,int v)
{
int re = , i;
if(dep[u] < dep[v]) swap(u,v);
for(i = lg; i >= ; i--) if(dep[u] - (<<i) >= dep[v]){
re = max(re,mx[u][i]);
u = fa[u][i];
}
if(u == v) return re;
for(i = lg; i >= ; i--) if(fa[u][i] != fa[v][i]){
re = max(re,max(mx[u][i],mx[v][i]));
u = fa[u][i];
v = fa[v][i];
}
return max(re,max(mx[u][],mx[v][]));
} //#define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
//cout<<log2(N);
scanf("%d%d",&n,&m);
int i,j;
for(i = ; i <= m; i++){
scanf("%d%d%d",fro+i,to+i,we+i);
}
ll mst = kruskal(); dfs();
lg = ceil(log2(n));
for(j = ; j <= lg; j++){
for(i = ; i <= n; i++) if(fa[i][j-]){
fa[i][j] = fa[fa[i][j-]][j-];
mx[i][j] = max(mx[i][j-],mx[fa[i][j-]][j-]);
}
}
for(i = ; i <= m; i++) {
printf("%I64d\n",we[i]?mst + we[i] - queryMx(fro[i],to[i]):mst);
}
return ;
}
codeforces 609E Minimum spanning tree for each edge的更多相关文章
- [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]
这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...
- codeforces 609E. Minimum spanning tree for each edge 树链剖分
题目链接 给一个n个节点m条边的树, 每条边有权值, 输出m个数, 每个数代表包含这条边的最小生成树的值. 先将最小生成树求出来, 把树边都标记. 然后对标记的边的两个端点, 我们add(u, v), ...
- Educational Codeforces Round 3 E (609E) Minimum spanning tree for each edge
题意:一个无向图联通中,求包含每条边的最小生成树的值(无自环,无重边) 分析:求出这个图的最小生成树,用最小生成树上的边建图 对于每条边,不外乎两种情况 1:该边就是最小生成树上的边,那么答案显然 2 ...
- cf 609E.Minimum spanning tree for each edge
最小生成树,lca(树链剖分(太难搞,不会写)) 问存在这条边的最小生成树,2种情况.1.这条边在原始最小生成树上.2.加上这条半形成一个环(加上),那么就找原来这条边2端点间的最大边就好(减去).( ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
- CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
随机推荐
- PIE SDK文本元素的绘制
1. 功能简介 在数据的处理中会用到文本元素的绘制,利用ITextElement文本元素接口进行绘制,目前PIE SDK支持ITextSymbol符号接口,TextSymbol对象是用于修饰文字元素对 ...
- python练习六十九:urllib爬取练习
爬取图片,将链接中的图片取出来,并统计一共下载了多少图片 代码: def fetch_pictures(url): headers = {'User-Agent':'Mozilla/5.0 (Wind ...
- GreenPlum 大数据平台--运维(三)
一,操作命令 01,启动gpstart 参数说明 COMMAND NAME: gpstart Starts a Greenplum Database system. ***************** ...
- kafaka安装
wget https://mirrors.cnnic.cn/apache/kafka/2.0.0/kafka_2.11-2.0.0.tgz 解压 Tar -xvf kafka_2.11-2.0.0.t ...
- (转)netstat 命令详解
netstat 命令详解 原文:https://www.cnblogs.com/xieshengsen/p/6618993.html netstat命令是一个监控TCP/IP网络的非常有用的工具,它 ...
- 生产者与消费者模式-阻塞 wait,notify
设计思路:生产者push ,消费者 拿,篮子装,syncstack先进后出,while 判断 index=0 wait, 当 Producer生产了 并push到篮子里 notify(唤醒 ...
- Beam概念学习系列之Pipeline Runners
不多说,直接上干货! https://beam.apache.org/get-started/beam-overview/ 在 Beam 管道上运行引擎会根据你选择的分布式处理引擎,其中兼容的 API ...
- TOJ 2857 Stockbroker Grapevine
描述 Stockbrokers are known to overreact to rumours. You have been contracted to develop a method of s ...
- MySQL查询长数据是无值返回(可以尝试换行符)
如,要在数据库中包含这样数据的记录有多少条: <table class="link-more-blue" style="width: 100%;" bor ...
- php之mongodb插入数据后如何返回当前插入记录ID
<?php /** *插入记录 *参数: *$table_name:表名 *$record:记录 * *返回值: *成功:true *失败:false */ function insert($t ...