题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2333

。。题意概述就不写了,各位老爷如果是看着玩的可以去搜一下,如果是做题找来的也知道题干的。实际上是题干无法缩减懒得复制ORZ

首先处理一下集合的合并和单点值查询的问题。使用并查集,记录两个数组w,d:w记录对这个点单点操作的值,d记录对这个点代表的集合进行的操作累计的值,对于每个点find的时候把这个点到代表元路径上的点的d(不包括代表元)的d加起来更新这个点的d,每一次查询某个点的当前值的时候就先find就可以直接用w+d+代表元的d(特判这个点是不是代表元)回答。特别注意为了保证正确性在merge的时候要把双方中的某一个点建立成另外一个新点,原来两个点的pa是这个新点。这样值的集合修改和查询就解决。

接下来是最大值的问题。这里用的是可并堆。开两个可并堆,一个维护每个集合(称为hp1),另一个维护每个集合中的最大值(称为hp2)。有点lazy的思想,因为单点修改只会影响这个点的值,所以说直接在hp1中调整这个点的位置(注意到可能是向下,也可能是向上),然后看此集合中最大值对应的元素编号是否改变。改变的话就在hp2中删掉原来的最大元素编号加入新的,否则如果修改的这个点就是其集合中的最大值元素就在hp2中调整位置;如果是集合修改的话思路同单点直接调整被修改集合中最大值在hp2中的位置;对于所有值修改的操作直接单独记录一个数输出的时候加上就可以了(不影响单调性)。

这样调整之后任意时刻可并堆中的所有元素的位置都是正确的,正确性得以保证(虽然这个自己yy出来的东西代码有点长?)

最后说一件事情,自己乱搞数据结构的时候一定注意。。。。。指针要改完改对。。。。。

细节参见代码。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<cctype>
using namespace std;
const int MAXN=; int N,Q,A[MAXN];
struct union_find{
static const int maxn=;
int pa[maxn<<],stk[maxn<<],d[maxn<<],id[maxn<<],w[maxn<<],stk_top,np,ADD;
union_find(){ np=stk_top=ADD=; };
int newnode(int x) { w[++np]=x,pa[np]=np,d[np]=; return np; }
void initial(int n,int *a){
for(int i=;i<=n;i++) pa[i]=id[i]=i,w[i]=a[i],d[i]=;
np=n;
}
int find(int x)
{
while(pa[x]!=x) stk[++stk_top]=x,x=pa[x];
int rt=x,add=;
while(stk_top) x=stk[stk_top],add+=d[x],d[x]=add,pa[x]=rt,stk_top--;
return rt;
}
int val(int x) { find(x); return w[x]+d[x]+(pa[x]==x?:d[pa[x]])+ADD; }
bool judge(int x,int y) { return find(x)==find(y); }
void merge(int x,int y) { pa[find(x)]=pa[find(y)]=newnode(val(y)-ADD); }
}uf;
struct mergeable_heap{
static const int maxn=;
int chd[maxn][],fa[maxn];
void initial(int n) { for(int i=;i<=n;i++) chd[i][]=chd[i][]=fa[i]=; }
int val(int x) { return uf.val(uf.id[x]); }
void link(int x,int d,int y) { chd[x][d]=y,fa[y]=x; }
int root(int x) { while(fa[x]) x=fa[x]; return x; }
int merge(int A,int B)
{
if(!A||!B) return A+B;
if(val(A)<val(B)) swap(A,B);
link(A,,merge(chd[A][],B)); swap(chd[A][],chd[A][]);
return A;
}
void ins(int A,int B) { fa[A]=chd[A][]=chd[A][]=; merge(A,B); }
void del(int A)
{
if(A==root(A)) fa[merge(chd[A][],chd[A][])]=;
else{
int d=A==chd[fa[A]][];
link(fa[A],d,merge(chd[A][],chd[A][]));
}
}
int top(int x) { return val(root(x)); }
void rot(int x)
{
int p=fa[x],e=x==chd[p][];
int a=chd[x][],b=chd[x][],c=chd[p][e],d=fa[p];
link(p,,a); link(p,,b);
link(x,,e?p:c); link(x,,e?c:p);
link(d,chd[d][]==p,x);
}
void adjust(int x)
{
while(fa[x]&&val(x)>val(fa[x])) rot(x);
while(chd[x][]||chd[x][]){
int y;
if(!chd[x][]||!chd[x][]) y=chd[x][]?chd[x][]:chd[x][];
else y=val(chd[x][])>val(chd[x][])?chd[x][]:chd[x][];
if(val(y)<=val(x)) break;
rot(y);
}
}
}hp1,hp2; void _scanf(char &x)
{
x=getchar();
while(x!='U'&&x!='A'&&x!='F') x=getchar();
}
void data_in()
{
scanf("%d",&N);
for(int i=;i<=N;i++) scanf("%d",&A[i]);
scanf("%d",&Q);
}
void work()
{
uf.initial(N,A);
hp1.initial(N); hp2.initial(N);
for(int i=;i<N;i++)
hp2.merge(hp2.root(i),i+);
char op1; int op2,x,y,v,rx,ry;
for(int i=;i<=Q;i++){
_scanf(op1);
if(op1=='U'){
scanf("%d%d",&x,&y);
if(!uf.judge(uf.id[x],uf.id[y])){
rx=hp1.root(x),ry=hp1.root(y);
uf.merge(uf.id[x],uf.id[y]);
hp1.merge(rx,ry);
if(rx!=hp1.root(x)) hp2.del(rx); else hp2.del(ry);
}
}
else if(op1=='A'){
scanf("%d",&op2);
if(op2==){
scanf("%d%d",&x,&v);
rx=hp1.root(x);
uf.w[uf.id[x]]+=v; hp1.adjust(x);
if(rx!=hp1.root(x)){
int rt=max(hp2.fa[rx],max(hp2.chd[rx][],hp2.chd[rx][]));
hp2.del(rx); rt=hp2.root(rt);
hp2.ins(hp1.root(x),rt);
}
else if(rx==x) hp2.adjust(x);
}
else if(op2==){
scanf("%d%d",&x,&v);
uf.d[uf.find(uf.id[x])]+=v;
hp2.adjust(hp1.root(x));
}
else if(op2==) scanf("%d",&v),uf.ADD+=v;
}
else if(op1=='F'){
scanf("%d",&op2);
if(op2==) scanf("%d",&x),printf("%d\n",hp1.val(x));
else if(op2==) scanf("%d",&x),printf("%d\n",hp1.top(x));
else if(op2==) printf("%d\n",hp2.top(hp1.root()));
}
}
}
int main()
{
data_in();
work();
return ;
}

BZOJ 2333 SCOI2011 棘手的操作 并查集+可并堆的更多相关文章

  1. BZOJ 2333: [SCOI2011]棘手的操作

    题目描述 真的是个很棘手的操作.. 注意每删除一个点,就需要clear一次. #include<complex> #include<cstdio> using namespac ...

  2. BZOJ 2333 [SCOI2011]棘手的操作 (可并堆)

    码农题.. 很显然除了两个全局操作都能用可并堆完成 全局最大值用个multiset记录,每次合并时搞一搞就行了 注意使用multiset删除元素时 如果直接delete一个值,会把和这个值相同的所有元 ...

  3. BZOJ 2333: [SCOI2011]棘手的操作 可并堆 左偏树 set

    https://www.lydsy.com/JudgeOnline/problem.php?id=2333 需要两个结构分别维护每个连通块的最大值和所有连通块最大值中的最大值,可以用两个可并堆实现,也 ...

  4. bzoj 2333 [SCOI2011]棘手的操作 —— 可并堆

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2333 稍微复杂,参考了博客:http://hzwer.com/5780.html 用 set ...

  5. 2333: [SCOI2011]棘手的操作[离线线段树]

    2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2325  Solved: 909[Submit][Stat ...

  6. 2333: [SCOI2011]棘手的操作[写不出来]

    2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1979  Solved: 772[Submit][Stat ...

  7. 2333: [SCOI2011]棘手的操作[我不玩了]

    2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1979  Solved: 772[Submit][Stat ...

  8. 【BZOJ】2333: [SCOI2011]棘手的操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=2333 题意: 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i], ...

  9. 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树)

    2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...

随机推荐

  1. c语言描述的顺序栈实现

    #include<stdio.h> #include<stdlib.h> #define initsize 100 #define ok 1 #define error 0 t ...

  2. java的异常分类

    结构关系 throwable error   exception checked异常 runtime异常 checked异常也叫io异常这种异常一般我们会在程序块加入trycatch处理它. runt ...

  3. Openresty最佳案例 | 汇总

    转载请标明出处: http://blog.csdn.net/forezp/article/details/78616856 本文出自方志朋的博客 目录 Openresty最佳案例 | 第1篇:Ngin ...

  4. Less 常用基础知识

    LESS 中的注释 也可以额使用css 中的注释(/**/) 这种方式是可以被编译出来的. 也可以使用// 注释 不会被编译的 变量 声明变量的话一定要用@开头 例如:@变量名称:值: @test_w ...

  5. 如何在Vue中使用Mockjs模拟数据的增删查改

    之前一直使用json-server在前端开发时,搭建本地数据接口测试,但有时又需要将做好的项目放于 github page上做项目演示.在本地时,json server很好使用,但一旦放在github ...

  6. 【TOJ 5065】最长连续子序列(前缀和)

    Description 给定一系列非负整数,求最长的连续子序列,使其和是7的倍数. Input 第一行为正整数N(1<=N<=50000),接下来有N行,每行有一个非负整数,所有整数不大于 ...

  7. chromium之tuple

    // A Tuple is a generic templatized container, similar in concept to std::pair. // There are classes ...

  8. TCP回话劫持原理和利用

    由于 TCP 协议并没有对 TCP 的传输包进行身份验证,所以在我们知道一个 TCP 连接中的 seq 和 ack 的信息后就可以很容易的伪造传输包,假装任意一方与另一方进行通信,我们将这一过程称为 ...

  9. 前端pc版的简单适配

    我们都知道对于前端pc版本的适配是一个难题,大部分都是做的媒体查询.但是有时间公司不要媒体查询 就是需要不管多大的屏幕都是满屏显示.我就在考虑为啥不用rem给pc端做个适配. 我是基于设计图是1920 ...

  10. 五、RegExp(正则表达式)篇

    正则表达式,只用记住: 0./pattern/igm   i--不区分大小写 g--找到所有相匹配的 m--多行匹配  可以只写其中一个  ps:/pattern/i (无视大小写) 1." ...