tensorflow学习笔记(2)-反向传播
tensorflow学习笔记(2)-反向传播
反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小
损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真实值得差距,比如sigmod或者cross-entropy
均方误差:tf.reduce_mean(tf.square(y-y_))很好理解,假如在欧式空间只有两个点的的话就是两点间距离的平方,多点就是多点误差的平方和除以对比点个数
学习率:决定了参数每次更新的幅度
反向传播训练方法:为了减小loss的值为优化目标
# -*- coding: utf-8 -*-
"""
Created on Sat May 26 18:42:08 2018 @author: Administrator
""" import tensorflow as tf
import numpy as np
BATCH_SIZE=8
seed=23455 #基于seed产生随机数
rng=np.random.RandomState(seed)
#随机返回32行2列的矩阵 作为数据集输入
X=rng.rand(32,2) #从X这个32行2列的矩阵中取出一行 判断如果和小于1 给Y赋值1 如果和不小于1 给Y赋值0
#Y作为训练集的标签
Y=[[int((x0+x1)<1)] for(x0,x1) in X] print(X)
print(Y)
#定义输入,参数和输出
x=tf.placeholder(tf.float32,shape=(None,2))
y_=tf.placeholder(tf.float32,shape=(None,1))
#2是特征值 3是隐藏层 1是输出
w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
w2=tf.Variable(tf.random_normal([3,1],stddev=1,seed=1)) a=tf.matmul(x,w1)
y=tf.matmul(a,w2) #定义损失函数以及反向传播方法
loss=tf.reduce_mean(tf.square(y-y_))
train_step=tf.train.GradientDescentOptimizer(0.001).minimize(loss) #会话训练
with tf.Session() as sess:
init_op=tf.global_variables_initializer()
sess.run(init_op)
#输出未训练的参数值
print(sess.run(w1))
print(sess.run(w2)) #训练3000次
STEPS=10000
for i in range(STEPS):
start=(i*BATCH_SIZE)%32
end=BATCH_SIZE+start
#每次训练抽取start到end的数据
sess.run(train_step,feed_dict={x:X[start:end],y_:Y[start:end]})
#每500次打印一次参数
if i%500==0:
total_loss=sess.run(loss,feed_dict={x:X,y_:Y})
print("在第%d次训练,损失为%g"%(i,total_loss))
#输出训练后的参数
print("\n")
print(sess.run(w1))
print(sess.run(w2))
这是输出的内容
我们现在稍微改下参数比较下,首先是学习速率
当学习速率为0.1时候 当学习速率为0.01
可以看出来学习速率越大梯度下降越块。
再来看看隐藏层
首先是隐藏层为4时候 隐藏层为3时候
现在还不知道隐藏层怎么定义,知道以后再补上
问了群里老哥:老哥回答
tensorflow学习笔记(2)-反向传播的更多相关文章
- tensorflow学习笔记(1)-基本语法和前向传播
tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程. 图中的constant是个常量 计 ...
- tensorflow学习笔记(4)-学习率
tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...
- tensorflow学习笔记(3)前置数学知识
tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个 b为4* ...
- TensorFlow学习笔记——深层神经网络的整理
维基百科对深度学习的精确定义为“一类通过多层非线性变换对高复杂性数据建模算法的合集”.因为深层神经网络是实现“多层非线性变换”最常用的一种方法,所以在实际中可以认为深度学习就是深度神经网络的代名词.从 ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- tensorflow学习笔记——自编码器及多层感知器
1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...
- TensorFlow学习笔记10-卷积网络
卷积网络 卷积神经网络(Convolutional Neural Network,CNN)专门处理具有类似网格结构的数据的神经网络.如: 时间序列数据(在时间轴上有规律地采样形成的一维网格): 图像数 ...
- Tensorflow学习笔记No.4.1
使用CNN卷积神经网络(1) 简单介绍CNN卷积神经网络的概念和原理. 已经了解的小伙伴可以跳转到Tensorflow学习笔记No.4.2学习如和用Tensorflow实现简单的卷积神经网络. 1.C ...
随机推荐
- centos修改hostname
1.临时修改 hostname localhost 2.永久修改 vim /etc/sysconfig/network 修改hostname的值后保存
- ActiveX控件注册不起作用的解决办法
公司写了一个ActiveX打印插件.其中一个同事的电脑死活不能用.于是我就上网找办法 这位兄弟写的比较清晰. ActiveX交互时浏览器的设置以及ActiveX控件注册的检测 http://blog. ...
- detection工作
今天看到YOLO2的工作还是很不错的,效果好,关键是速度也快,已经完胜SSD了感觉. 虽然faster rcnn各方面效果都不错,但是从简单粗暴的角度考虑,SSD和YOLO真的深得我心啊. 检测模型, ...
- noip2018 洛谷 P1969积木大赛
1 //一定不要忘记这句话 “连续区间 ”!! #include<bits/stdc++.h> using namespace std; int main(){ int n, h;//n是 ...
- jzoj5196. 【NOIP2017提高组模拟7.3】B (数论,巧妙的暴力)
Description
- A+B Problem(高精)
题目背景 无 题目描述 高精度加法,x相当于a+b problem,[b][color=red]不用考虑负数[/color][/b] 输入输出格式 输入格式: 分两行输入a,b<=10^500 ...
- 洛谷P2439 [SDOI2005]阶梯教室设备利用(带权区间覆盖)
题目背景 我们现有许多演讲要在阶梯教室中举行.每一个演讲都可以用唯一的起始和终止时间来确定,如果两个演讲时间有部分或全部重复,那么它们是无法同时在阶级教室中举行的.现在我们想要尽最大可能的利用这个教室 ...
- Docker与FastDFS的安装命令及使用
Docker特点 1)上手快 用户只需要几分钟,就可以把自己的程序“Docker 化”.Docker 依赖于“写时复制” (copy-on-write)模型,使修改应用程序也非常迅速,可以说达到“随心 ...
- 程序设计的SOLID原则
要想设计一个良好的程序,建议采用SOLID原则,若考虑了SOLID,可以使程序在模块内具有高内聚.而模块间具有低耦合的特点. SOLID原则包括5方面的内容: S---单责任原则(SRP) 一个模块只 ...
- Andrew Ng Machine Learning Coursera学习笔记
课程记录笔记如下: 1.目前ML的应用 包括:数据挖掘database mining.邮件过滤email anti-spam.机器人autonomous robotics.计算生物学computati ...