1.利用Logistic regression 进行分类的主要思想

根据现有数据对分类边界线建立回归公式,即寻找最佳拟合参数集,然后进行分类。

2.利用梯度下降找出最佳拟合参数

3.代码实现

 # -*- coding: utf-8 -*-
"""
Created on Tue Mar 28 21:35:25 2017 @author: MyHome
"""
import numpy as np
from random import uniform
'''定义sigmoid函数'''
def sigmoid(inX):
return 1.0 /(1.0 +np.exp(-inX)) '''使用随机梯度下降更新权重,并返回最终值'''
def StocGradientDescent(dataMatrix,classLabels,numIter = 600):
m,n = dataMatrix.shape
#print m,n
weights = np.ones(n)
for j in xrange(numIter):
dataIndex = range(m) for i in xrange(m): alpha = 4 / (1.0+j+i) + 0.01
randIndex = int(uniform(0,len(dataIndex)))
h = sigmoid(sum(dataMatrix[randIndex]*weights))
gradient = (h - classLabels[randIndex])*dataMatrix[randIndex]
weights = weights - alpha*gradient
del(dataIndex[randIndex]) return weights '''创建分类器'''
def classifyVector(inX,weights):
prob = sigmoid(sum(inX*weights))
if prob > 0.5:
return 1.0
else:
return 0.0 '''测试'''
def Test(): frTrain = open("horseColicTraining.txt")
frTest = open("horseColicTest.txt")
trainingSet = []
trainingLabel = []
for line in frTrain.readlines():
currLine = line.strip().split("\t")
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabel.append(float(currLine[21]))
trainWeights = StocGradientDescent(np.array(trainingSet),trainingLabel)
errorCount = 0.0
numTestVec = 0.0
for line in frTest.readlines():
numTestVec += 1.0
currLine = line.strip().split("\t")
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(np.array(lineArr),trainWeights)) != int(currLine[21]):
errorCount += 1
errorRate = (float(errorCount)/numTestVec)
print "the error rate of this test is:%f"%errorRate
return errorRate '''调用Test()10次求平均值'''
def multiTest():
numTest = 10
errorSum = 0.0
for k in range(numTest):
errorSum += Test()
print "after %d iterations the average errror rate is:\
%f"%(numTest,errorSum/float(numTest)) if __name__ == "__main__":
multiTest()

结果:

the error rate of this test is:0.522388
the error rate of this test is:0.328358

the error rate of this test is:0.313433

the error rate of this test is:0.358209

the error rate of this test is:0.298507

the error rate of this test is:0.343284

the error rate of this test is:0.283582

the error rate of this test is:0.313433

the error rate of this test is:0.343284

the error rate of this test is:0.358209

after 10 iterations the average errror rate is:        0.346269

4.总结

Logistic regression is finding best-fit parameters to a nonlinear function called the sigmoid.

Methods of optimization can be used to find the best-fit parameters. Among the

optimization algorithms, one of the most common algorithms is gradient descent. Gradient

desent can be simplified with stochastic gradient descent.

Stochastic gradient descent can do as well as gradient descent using far fewer computing

resources. In addition, stochastic gradient descent is an online algorithm; it can

update what it has learned as new data comes in rather than reloading all of the data

as in batch processing.

One major problem in machine learning is how to deal with missing values in the

data. There’s no blanket answer to this question. It really depends on what you’re

doing with the data. There are a number of solutions, and each solution has its own

advantages and disadvantages.

Logistic Regression 用于预测马是否生病的更多相关文章

  1. Logistic回归应用-预测马的死亡率

    Logistic回归应用-预测马的死亡率 本文所有代码均来自<机器学习实战>,数据也是 本例中的数据有以下几个特征: 部分指标比较主观.难以很好的定量测量,例如马的疼痛级别 数据集中有30 ...

  2. matlab(8) Regularized logistic regression : 不同的λ(0,1,10,100)值对regularization的影响,对应不同的decision boundary\ 预测新的值和计算模型的精度predict.m

    不同的λ(0,1,10,100)值对regularization的影响\ 预测新的值和计算模型的精度 %% ============= Part 2: Regularization and Accur ...

  3. Machine Learning - 第3周(Logistic Regression、Regularization)

    Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...

  4. Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!

    原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...

  5. 机器学习理论基础学习3.3--- Linear classification 线性分类之logistic regression(基于经验风险最小化)

    一.逻辑回归是什么? 1.逻辑回归 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的. logistic回归也称为逻辑回归,与线性回归这样输出 ...

  6. SparkMLlib之 logistic regression源码分析

    最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其 ...

  7. Logistic Regression Vs Decision Trees Vs SVM: Part I

    Classification is one of the major problems that we solve while working on standard business problem ...

  8. Logistic Regression逻辑回归

    参考自: http://blog.sina.com.cn/s/blog_74cf26810100ypzf.html http://blog.sina.com.cn/s/blog_64ecfc2f010 ...

  9. 在opencv3中实现机器学习之:利用逻辑斯谛回归(logistic regression)分类

    logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻 ...

随机推荐

  1. Codeforces 589F Gourmet and Banquet

    A gourmet came into the banquet hall, where the cooks suggested n dishes for guests. The gourmet kno ...

  2. 1132. Cut Integer (20)

    Cutting an integer means to cut a K digits long integer Z into two integers of (K/2) digits long int ...

  3. LG3648 [APIO2014]序列分割

    题意 你正在玩一个关于长度为 \(n\) 的非负整数序列的游戏.这个游戏中你需要把序列分成 \(k+1\) 个非空的块.为了得到 \(k+1\) 块,你需要重复下面的操作 \(k\) 次: 选择一个有 ...

  4. sqlalchemy的缓存和刷新

    其实只是第一次查询了数据库,其他的时候都使用的是缓存,所以有时候,因为这个特性会出错,所以需要刷新对象或者使对象过期 参考链接:http://www.cnblogs.com/fengyc/p/5369 ...

  5. minio  nginx 配置

    1. 参考配置  server { listen 80; server_name example.com; location / { proxy_set_header Host $http_host; ...

  6. 一个detect问题引发的一系列思考

    在用BoneCP的时候,发现一个JVM日志中报了一个异常,大意是“探测(detect)到有数据库链接没有关闭”(不得不说JVM的强大),但是我用的是连接池里面的链接啊,怎么会需要关闭呢? 有问题首先找 ...

  7. 安卓apk包重复签名问题

    安卓数字签名指的是对apk包做文件摘要并加密,在安装apk包时做解密和验证以保证包体不被篡改.这里先普及下签名和验证流程.签名文件保存在apk包里META-INF目录下,包含3个文件: 1.后缀为MF ...

  8. Voting and Shuffling to Optimize Atomic Operations

    2iSome years ago I started work on my first CUDA implementation of the Multiparticle Collision Dynam ...

  9. appstore 上传需要的icon

    <key>CFBundleIconFiles</key><array> <string>icon@2x.png</string> <s ...

  10. selenium之 chromedriver与chrome版本映射表

    看到网上基本没有最新的chromedriver与chrome的对应关系表,便兴起整理了一份如下,希望对大家有用: chromedriver版本 支持的Chrome版本 v2.40 v66-68 v2. ...