又积累了一个网络流模型:最大权闭合子图,相关证明去看论文,感觉自己不是很懂证明,但现在还是先把建模记下来再说吧

枚举一个点,硬点它一定要被选中,那么以它为根,如果选了$x$就必须要选$fa_x$,这就是闭合图的定义了,再加上权值最大,所以直接上最大权闭合子图即可

最大权闭合子图的建模方法:把原图中的每一条边容量设为$+\infty$,对每个$v_x\gt0$的点,连边$(s,x,v_x)$,对每个$v_x\lt0$的点,连边$(x,t,|v_x|)$,所有正权点的权值之和减去$s\rightarrow t$的最小割就是答案

#include<stdio.h>
#include<string.h>
const int inf=1000000000;
int min(int a,int b){return a<b?a:b;}
int max(int a,int b){return a>b?a:b;}
int h[110],cur[110],nex[810],to[810],cap[810],dis[110],q[110],M,S,T;
void add(int a,int b,int c){
	M++;
	to[M]=b;
	cap[M]=c;
	nex[M]=h[a];
	h[a]=M;
	M++;
	to[M]=a;
	cap[M]=0;
	nex[M]=h[b];
	h[b]=M;
}
bool bfs(){
	int head,tail,i,x;
	head=tail=1;
	q[1]=S;
	memset(dis,-1,sizeof(dis));
	dis[S]=0;
	while(head<=tail){
		x=q[head];
		head++;
		for(i=h[x];i;i=nex[i]){
			if(cap[i]>0&&dis[to[i]]==-1){
				dis[to[i]]=dis[x]+1;
				if(to[i]==T)return 1;
				tail++;
				q[tail]=to[i];
			}
		}
	}
	return dis[T]>0;
}
int dfs(int x,int flow){
	if(x==T)return flow;
	int i,f;
	for(i=cur[x];i;i=nex[i]){
		if(cap[i]>0&&dis[to[i]]==dis[x]+1){
			f=dfs(to[i],min(flow,cap[i]));
			if(f){
				cap[i]-=f;
				cap[i^1]+=f;
				if(cap[i])cur[x]=i;
				return f;
			}
		}
	}
	dis[x]=-1;
	return 0;
}
int dicnic(){
	int ans=0,tmp;
	while(bfs()){
		memcpy(cur,h,sizeof(h));
		while(tmp=dfs(S,inf))ans+=tmp;
	}
	return ans;
}
struct tree{
	int h[110],nex[210],to[210],M;
	void reset(){
		M=0;
		memset(h,0,sizeof(h));
	}
	void add(int a,int b){
		M++;
		to[M]=b;
		nex[M]=h[a];
		h[a]=M;
	}
	void dfs(int f,int x){
		for(int i=h[x];i;i=nex[i]){
			if(to[i]!=f){
				::add(to[i],x,inf);
				dfs(x,to[i]);
			}
		}
	}
}a,b;
int v[110],n;
int get(int x){
	int i,sum;
	M=1;
	memset(h,0,sizeof(h));
	a.dfs(0,x);
	b.dfs(0,x);
	sum=0;
	for(i=1;i<=n;i++){
		if(v[i]>0){
			sum+=v[i];
			add(S,i,v[i]);
		}
		if(v[i]<0)add(i,T,-v[i]);
	}
	return sum-dicnic();
}
int main(){
	int T,i,x,y,ans;
	scanf("%d",&T);
	while(T--){
		a.reset();
		b.reset();
		scanf("%d",&n);
		S=n+1;
		::T=n+2;
		for(i=1;i<=n;i++)scanf("%d",v+i);
		for(i=1;i<n;i++){
			scanf("%d%d",&x,&y);
			a.add(x,y);
			a.add(y,x);
		}
		for(i=1;i<n;i++){
			scanf("%d%d",&x,&y);
			b.add(x,y);
			b.add(y,x);
		}
		ans=-inf;
		for(i=1;i<=n;i++)ans=max(ans,get(i));
		printf("%d\n",ans);
	}
}

[xsy2164]theory的更多相关文章

  1. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  2. 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)

    Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...

  3. Understanding theory (1)

    Source: verysmartbrothas.com It has been confusing since my first day as a PhD student about theory ...

  4. Machine Learning Algorithms Study Notes(3)--Learning Theory

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...

  5. Java theory and practice

    This content is part of the series: Java theory and practice A brief history of garbage collection A ...

  6. CCJ PRML Study Note - Chapter 1.6 : Information Theory

    Chapter 1.6 : Information Theory     Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...

  7. 信息熵 Information Theory

    信息论(Information Theory)是概率论与数理统计的一个分枝.用于信息处理.信息熵.通信系统.数据传输.率失真理论.密码学.信噪比.数据压缩和相关课题.本文主要罗列一些基于熵的概念及其意 ...

  8. Computer Science Theory for the Information Age-4: 一些机器学习算法的简介

    一些机器学习算法的简介 本节开始,介绍<Computer Science Theory for the Information Age>一书中第六章(这里先暂时跳过第三章),主要涉及学习以 ...

  9. Computer Science Theory for the Information Age-1: 高维空间中的球体

    高维空间中的球体 注:此系列随笔是我在阅读图灵奖获得者John Hopcroft的最新书籍<Computer Science Theory for the Information Age> ...

随机推荐

  1. 如何解析Json返回的数据

    Json在Web开发的用处非常广泛,作为数据传递的载体,如何解析Json返回的数据是非常常用的.下面介绍下四种解析Json的方式: Part 1 var list1 = [1,3,4]; alert( ...

  2. DSP投放进阶指南

  3. (转)用python实现抓取网页、模拟登陆

    涉及一系列内容,部分已在前面转载,仍转自crifan: http://www.crifan.com/how_to_use_some_language_python_csharp_to_implemen ...

  4. JS 中 call 和 apply 的理解和使用

    本文受到了知乎问题 如何理解和熟练运用js中的call及apply? 的启发. obj.call(thisObj, arg1, arg2, ...); obj.apply(thisObj, [arg1 ...

  5. Spring任务调度<task:scheduled-tasks>【含cron参数详解】 (转载)

    Spring内部有一个task是Spring自带的一个设定时间自动任务调度 task使用的时候很方便,但是他能做的东西不如quartz那么的多! 可以使用注解和配置两种方式,配置的方式如下 引入Spr ...

  6. OpenCV+Java环境搭建

    1.官网地址http://opencv.org/ 1.首先下载OpenCV2.4.6,下载的时候,选择windows版的.然后安装 2.其实安装的过程就是解压的过程,并没有什么安装向导之类的,安装完成 ...

  7. [51nod1009]数字1的数量

    解题关键:数位dp,对每一位进行考虑,通过过程得出每一位上1出现的次数 1位数的情况: 在解法二中已经分析过,大于等于1的时候,有1个,小于1就没有. 2位数的情况: N=13,个位数出现的1的次数为 ...

  8. 1552: [Cerc2007]robotic sort

    这道题用splay写 先离散化数据保证按题目所述顺序来写 按原序作为键值建树 维护区间最小值去跑 每次将i的位置 和 n的位置x和y找出来后 将x旋转到root y旋转到x的有儿子 这时y的左子树就是 ...

  9. 扑克牌(cards)

    扑克牌 思路 这题也是二分!! 我们二分有几套牌,然后再去检验是否符合,至于怎么想到的,不要问我,我也不知道 那么我们主要解决的就是check函数 我们将二分的套数和每种牌的数量进行比较,如果该种牌的 ...

  10. WebSocket最简易理解,term.js插件的使用

    介绍WebSocket WebSocket我想大家并不陌生,无论你的的工作中是否用到了它,都或多或少听说过,它是h5中新增的,在某些方面可以很好的替代我们一直沿用的ajax技术,甚至更加的出色.但是它 ...