【Floyd】【Dilworth定理】【最小路径覆盖】【匈牙利算法】bzoj1143 [CTSC2008]祭祀river
Dilworth定理,将最长反链转化为最小链覆盖。//貌似还能把最长上升子序列转化为不上升子序列的个数?
floyd传递闭包,将可以重叠的最小链覆盖转化成不可重叠的最小路径覆盖。(引用:这样其实就是相当于将原图改造了一下,只要 x 能到达 y ,就直接连一条边 (x, y),这样就可以“绕过”原图的一些被其他路径占用的点,直接构造新路径了。)
建立二分图,跑匈牙利。(见白书P357)
#include<cstdio>
#include<cstring>
using namespace std;
#define N 101
#define M 10001
int n,m;
int v[M],next[M],first[N<<1],en;
int mat[N<<1];
bool vis[N<<1],a[N][N];
void AddEdge(int U,int V)
{
v[++en]=V;
next[en]=first[U];
first[U]=en;
}
bool dfs(int U)
{
for(int i=first[U];i;i=next[i])
if(!vis[v[i]])
{
vis[v[i]]=1;
if(mat[v[i]]==-1||dfs(mat[v[i]]))
{
mat[v[i]]=U;
return 1;
}
}
return 0;
}
int MaxMatch()
{
int res=0;
memset(mat+1+n,-1,sizeof(int)*n);
for(int i=1;i<=n;++i)
{
memset(vis+n+1,0,sizeof(bool)*n);
if(dfs(i)) ++res;
}
return res;
}
int main()
{
scanf("%d%d",&n,&m);
int x,y;
for(int i=1;i<=m;++i)
{
scanf("%d%d",&x,&y);
a[x][y]=1;
}
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
for(int k=1;k<=n;++k)
if(i!=j&&j!=k&&a[j][i]&&a[i][k])
a[j][k]=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
if(a[i][j])
AddEdge(i,j+n);
printf("%d\n",n-MaxMatch());
return 0;
}
【Floyd】【Dilworth定理】【最小路径覆盖】【匈牙利算法】bzoj1143 [CTSC2008]祭祀river的更多相关文章
- HDU3335 Divisibility Dilworth定理+最小路径覆盖
首先需要一些概念: 有向图,最小路径覆盖,最大独立集,Dilworth,偏序集,跳舞链(DLX).... 理解一: 对于DAG图,有:最大独立集=点-二分匹配数,二分匹配数=最小路径覆盖. 而无向图, ...
- [BZOJ1143][CTSC2008]祭祀river(Dilworth定理+二分图匹配)
题意:给你一张n个点的DAG,最大化选择的点数,是点之间两两不可达. 要从Dilworth定理说起. Dilworth定理是定义在偏序集上的,也可以从图论的角度解释.偏序集中两个元素能比较大小,则在图 ...
- BZOJ1143 [CTSC2008]祭祀river 二分图匹配 最小链覆盖
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1143 题意概括 给出一个有向图.求最小链覆盖. 题解 首先说两个概念: 链:一条链是一些点的集合, ...
- cogs 728. [网络流24题] 最小路径覆盖问题 匈牙利算法
728. [网络流24题] 最小路径覆盖问题 ★★★☆ 输入文件:path3.in 输出文件:path3.out 评测插件时间限制:1 s 内存限制:128 MB 算法实现题8-3 最 ...
- 【网络流24题】 No.3 最小路径覆盖问题 (网络流|匈牙利算法 ->最大二分匹配)
[题意] 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交) 的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 G 的一个路径覆盖. P 中路径可以从 V 的任何一 ...
- 洛谷 P2764 最小路径覆盖问题【匈牙利算法】
经典二分图匹配问题.把每个点拆成两个,对于原图中的每一条边(i,j)连接(i,j+n),最小路径覆盖就是点数n-二分图最大匹配.方案直接顺着匹配dsf.. #include<iostream&g ...
- POJ-2594 Treasure Exploration,floyd+最小路径覆盖!
Treasure Exploration 复见此题,时隔久远,已忘,悲矣! 题意:用最少的机器人沿单向边走完( ...
- POJ 3216 最小路径覆盖+floyd
Repairing Company Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 6646 Accepted: 178 ...
- HDU 4606 Occupy Cities ★(线段相交+二分+Floyd+最小路径覆盖)
题意 有n个城市,m个边界线,p名士兵.现在士兵要按一定顺序攻占城市,但从一个城市到另一个城市的过程中不能穿过边界线.士兵有一个容量为K的背包装粮食,士兵到达一个城市可以选择攻占城市或者只是路过,如果 ...
随机推荐
- Codeforces Round #532 (Div. 2) 题解
Codeforces Round #532 (Div. 2) 题目总链接:https://codeforces.com/contest/1100 A. Roman and Browser 题意: 给出 ...
- Codeforces Round #487 (Div. 2) A Mist of Florescence (暴力构造)
C. A Mist of Florescence time limit per test 1 second memory limit per test 256 megabytes input stan ...
- codeforces 1060 D
https://codeforces.com/contest/1060/problem/D 题意:你可以用1个及以上的圆桌,给n个人排座位,每个人左边需要有Li个空凳子,右边需要有Ri个空凳子,问你最 ...
- 在线输入RGB更改背景色
HTML: <!DOCTYPE html><html> <head> <meta http-equiv="Content-Type" co ...
- vue双向绑定原理
要了解vue的双向绑定原理,首先得了解Object.defineProperty()方法,因为访问器属性是对象中的一种特殊属性,它不能直接在对象中设置,而必须通过 Object.definePrope ...
- ByteUtil 工具类
ByteUtil 工具类 import java.io.FileOutputStream; import java.io.OutputStream; import java.nio.charset.C ...
- 排序(bzoj 4552)
Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题 ,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这 ...
- GDSOI2015的某道题目
分析: 看到这个$3^i$就觉得很奇怪的样子...为什么一定要是$3^i$...而且不能重复使用... 不能重复使用就代表不会产生进位,那么一定是若干个$3^i$相加减的式子... 仔细观察,我们发现 ...
- 【洛谷 P3469】[POI2008]BLO-Blockade(割点)
题目链接 题意:一个无向联通图,求删去每个点及其所有边后有多少有序点对的连通性发生了变化. Tarjan求割点的例题.. 如果当前点不是割点,那么它对整个图的连通性不产生影响,只有自己与其他\(n-1 ...
- 微信小程序登录状态
我们知道,WEB服务器通过浏览器携带的cookie获取session来判断是否是同一用户(或浏览器):Restful服务通过客户端传过来唯一ID,来识别调用用户. >为什么需要维护登录态? 有自 ...