【题目大意】

求出∑gcd(i, N)(1<=i <=N)。

【思路】

对于x=ak,y=bk,若gcd(a,b)=1则必有gcd(x,y)=1。枚举N的所有因数,∑gcd(i, N)=∑(φ(N/k)*k)(k|N)。

*N的因数与必须在n^(1/2)时间内求出,否则会TLE。

【代码】

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
/*注意数据范围*/
const int MAXN=;
ll n;
ll factor[MAXN]; void get_factor()
/*必须在n^(1/2)时间以内求出所有的质因数,否则会TE*/
{
memset(factor,,sizeof(factor));
ll i;
for (i=;i*i<n;i++)
{
if (n%i==)
{
factor[++factor[]]=i;
factor[++factor[]]=n/i;
}
}
if (i*i==n) factor[++factor[]]=i;
} ll eular(ll k)
{
ll res=k;
for (ll p=;p*p<=k;p++)
{
if (k%p==)
{
res=res-res/p;
while (k%p==) k/=p;
}
}
if (k>) res=res-res/k;
/*主意k可能大于0,必须要再减去*/
return res;
} void init()
{
scanf("%d",&n);
} ll get_ans()
{
ll result=;
for (ll i=;i<=factor[];i++)
result+=eular(n/factor[i])*factor[i];
return result;
} int main()
{
init();
get_factor();
cout<<get_ans()<<endl;
return ;
}

【欧拉函数】BZOJ2190-[SDOI2012]longge的数学问题的更多相关文章

  1. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  2. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  3. 【bzoj2705】[SDOI2012]Longge的问题 欧拉函数

    题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入 一个整数,为N. 输出 ...

  4. 【SDOI2012】Longge 的问题 题解(欧拉函数)

    前言:还算比较简单的数学题,我这种数学蒟蒻也会做QAQ. --------------- 题意:求$\sum\limits_{i=1}^n gcd(i,n)$的值. 设$gcd(i,n)=d$,即$d ...

  5. BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)

    题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...

  6. 由 [SDOI2012]Longge的问题 探讨欧拉函数和莫比乌斯函数的一些性质和关联

    本题题解 题目传送门:https://www.luogu.org/problem/P2303 给定一个整数\(n\),求 \[ \sum_{i=1}^n \gcd(n,i) \] 蒟蒻随便yy了一下搞 ...

  7. [SDOI2012] Longge的问题 - 欧拉函数

    求 \(\sum\limits_{i=1}^{n}gcd(i,n)\) Solution 化简为 \(\sum\limits_{i|n}^{n}φ(\dfrac{n}{i})i\) 筛出欧拉函数暴力求 ...

  8. Longge's problem poj2480 欧拉函数,gcd

    Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6918   Accepted: 2234 ...

  9. Longge's problem(欧拉函数应用)

    Description Longge is good at mathematics and he likes to think about hard mathematical problems whi ...

随机推荐

  1. java 构造函数问题

    1.构造函数什么时候被调用,被谁调用? 转摘:http://bbs.csdn.net/topics/350231037 当然,只有在NEW的时候,才会真正的创建这个对象,只有在创建时才会调用该类的构造 ...

  2. JavaScript中cookie使用

    转自:http://www.cnblogs.com/yjzhu/archive/2012/11/26/2789032.html 一.什么是 cookie? cookie 就是页面用来保存信息,比如自动 ...

  3. mavne问题解决---Dynamic Web Module 2.3 or newer

    一:前沿 maven问题的bug,其实是很烦人的,因为每次都是很纠结的去改这个bug,特别的烦人,这个bug也是使得我纠结了好久的,那个星期五自己搞了几个小时都没有解决下,之后星期一来百度Google ...

  4. Nginx反向代理丢失cookie的问题

    今天在测试环境进行测试时发现有个页面无论如何都进不去了,经过调试发现,JSESSIONID的path和我访问应用的工程不相同!我访问的应用是/xxx/,而JSESSIONID的path是/yyy/,这 ...

  5. codechef T6 Pishty and tree dfs序+线段树

    PSHTTR: Pishty 和城堡题目描述 Pishty 是生活在胡斯特市的一个小男孩.胡斯特是胡克兰境内的一个古城,以其中世纪风格 的古堡和非常聪明的熊闻名全国. 胡斯特的镇城之宝是就是这么一座古 ...

  6. BestCoder Round #39 解题报告

    现场只做出前三题w 不过不管怎样这既是第一次认真打BC 又是第一次体验用在线编译器调代码 订正最后一题花了今天一整个下午(呜呜 收获还是比较大的^_^ Delete wld有n个数(a1,a2,... ...

  7. 最短路算法详解(Dijkstra,Floyd)

    最短路径 在一个无权的图中,若从一个顶点到另一个顶点存在着一条路径,则称该路径长度为该路径上所经过的边的数目,它等于该路径上的顶点数减1.由于从一个顶点到另一个顶点可能存在着多条路径,每条路径上所经过 ...

  8. 【Mysql优化】key和index区别

    mysql的key和index多少有点令人迷惑,这实际上考察对数据库体系结构的了解的.    1).key 是数据库的物理结构,它包含两层意义,一是约束(偏重于约束和规范数据库的结构完整性),二是索引 ...

  9. MySQL 查询语句练习1

    1.创建成绩表,字段包括:学生姓名,语文成绩,数学成绩,英语成绩 向表中插入多条数据: 查询: (1) 查询所有学生的数学成绩和总成绩 (2) 查询所有学生的语文和数学成绩和,按从高到低排序 (3) ...

  10. strace 命令是一种强大的工具,它能够显示所有由用户空间程序发出的系统调用。

    strace 命令是一种强大的工具,它能够显示所有由用户空间程序发出的系统调用. http://bbs.51cto.com/thread-1106891-1.html