GDOI2015的某道题目
分析:
考试的时候由于一些神奇的原因(我就不说是什么了)...没有想$C$题,直接交了个暴力上去...
然后发现暴力的数组开的太大,由于矩阵乘法的需要做$m$次初始化,所以只拿到了10分...
我们一步一步来挖掘题目中隐含的条件...
首先,这个矩阵乘法很特殊,是位运算的形式,那么也就是说,每一位的运算是独立的,所以我们可以拆位,处理每一位的运算...
然后考虑对于其中的一位如何快速计算一个矩阵的$n$次幂...考虑到每一个格子只有可能是$0$或$1$,观察发现,对于数字$a[i][j]$,只有当第$i$行和第$j$列是相同的时候,我们新的到的矩阵中$a[i][j]$才是$0$,否则因为是$or$运算,所以只要有一位不同就是$1$...
那么我们考虑$A^{m-1}*A=A^{m}$,记$X=A^{m-1}$,$Y=A^m$,我们考虑$X$的每一个行向量对应的$Y$中的行向量是什么样子的,如果当前的行向量和$A$中的任意一个列向量都相等的话,那么新得到的行向量就是一个全为$1$的向量,否则,最多只有可能有$n$种取值,现在我们假设$A$中的每一个列向量都互不相同,那么也就是说,当前的行向量只有可能有一个地方是$0$,这个$0$最多有$n$中位置...所以当前行向量所对应的结果中的行向量最多有$n+1$种取值...因为每一次我们乘上的矩阵都是相同的,所以说无论进行多少次乘法,我们都只有可能在$n+1$种取值中给行向量赋值...那么也就是说,现在我们有一个$n+1$个点的图,然后我们需要在这张图上走$m-1$步,那么就可以倍增找到答案...至于对于图的预处理我们可以用$bitset$来加速...
没有想出来的原因:
没有充分利用到位运算的性质区进行拆位,没有想到去考虑每个行向量所对应的结果是存在循环的...
代码:
一开始实在不理解怎么做所以直接抄了一遍$std$...
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
using namespace std; const int maxn=500+5; int n,m,tot,a[maxn][maxn],f[maxn<<1][30],id[maxn],ans[maxn][maxn]; struct M{ unsigned long long a[8]; friend bool operator == (M x,M y){
for(int i=0;i<=7;i++)
if(x.a[i]!=y.a[i])
return false;
return true;
} inline void modify(int pos,int x){
a[pos>>6]|=1ULL<<(pos&63);
if(!x)
a[pos>>6]^=1ULL<<(pos&63);
} inline bool query(int pos){
return (a[pos>>6]>>(pos&63))&1;
} }colu[maxn],node[maxn<<1]; inline int build(void){
for(int i=1;i<=tot;i++)
if(node[i]==node[tot+1])
return i;
int res=++tot;
for(int i=1;i<=n;i++)
node[tot+1].modify(i,!(node[res]==colu[i]));
f[res][0]=build();
return res;
} signed main(void){
freopen("C.in","r",stdin);
freopen("C.out","w",stdout);
scanf("%d%d",&n,&m);m--;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&a[i][j]);
for(int i=0;i<=30;i++){
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
colu[j].modify(k,(a[k][j]>>i)&1);
tot=0;
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++)
node[tot+1].modify(k,(a[j][k]>>i)&1);
id[j]=build();
}
for(int j=1;j<=29;j++)
for(int k=1;k<=tot;k++)
f[k][j]=f[f[k][j-1]][j-1];
for(int j=0;j<=29;j++)
if(m&(1<<j))
for(int k=1;k<=n;k++)
id[k]=f[id[k]][j];
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
ans[j][k]|=node[id[j]].query(k)<<i;
}
for(int i=1;i<=n;i++,puts(""))
for(int j=1;j<=n;j++)
printf("%d ",ans[i][j]);
return 0;
}
/*
Never give up.
Bless all.
*/
By NeighThorn
GDOI2015的某道题目的更多相关文章
- C语言超级经典400道题目
C语言超级经典400道题目 1.C语言程序的基本单位是____ A) 程序行 B) 语句 C) 函数 D) 字符.C.1 2.C语言程序的三种基本结构是____构A.顺序结构,选择结构,循环结 B.递 ...
- hdu 动态规划(46道题目)倾情奉献~ 【只提供思路与状态转移方程】(转)
HDU 动态规划(46道题目)倾情奉献~ [只提供思路与状态转移方程] Robberies http://acm.hdu.edu.cn/showproblem.php?pid=2955 背包 ...
- 小白欢乐多——记ssctf的几道题目
小白欢乐多--记ssctf的几道题目 二哥说过来自乌云,回归乌云.Web400来源于此,应当回归于此,有不足的地方欢迎指出. 0x00 Web200 先不急着提web400,让我们先来看看web200 ...
- 在 n 道题目中挑选一些使得所有人对题目的掌握情况不超过一半。
Snark and Philip are preparing the problemset for the upcoming pre-qualification round for semi-quar ...
- SQL的几道题目
1.构造数据插入方案表t_project_finish表 a)将addtime更新为当前时间的前一天 首先想到的是addtime=addtime-1,然后就开始验证这个想法. 插入一行数据,包括主键和 ...
- codeforces 几道题目
BZOJ挂了....明天就要出发去GDKOI了....不能弃疗. 于是在cf水了几道题, 写写详(jian)细(dan)题解, 攒攒RP, 希望GDKOI能好好发挥....... 620E. New ...
- leetcode 几道题目
是周六晚上的几道题,晚上11点半,睡的早,起不来! 494. Target Sum 分析:看完这题,看到数据范围,长度20,枚举就是1<<20 = 1e6, 然后单次20,总共就是2e8, ...
- C++面试出现频率最高的30道题目
http://blog.csdn.net/wangshihui512/article/details/9092439 1.new.delete.malloc.free关系 delete会调用对象的析构 ...
- 从几道题目带你深入理解Event Loop_宏队列_微队列
目录 深入探究JavaScript的Event Loop Event Loop的结构 回调队列(callbacks queue)的分类 Event Loop的执行顺序 通过题目来深入 深入探究Java ...
随机推荐
- 年薪20万Python工程师进阶(7):Python资源大全,让你相见恨晚的Python库
我是 环境管理 管理 Python 版本和环境的工具 pyenv – 简单的 Python 版本管理工具. Vex – 可以在虚拟环境中执行命令. virtualenv – 创建独立 Python 环 ...
- SharedPreferences Android
类似iOS的NSUserDefaults,采用key-value(键值对)形式,主要用于轻量级的数据存储 public class MainActivity extends AppCompatActi ...
- (4)分布式下的爬虫Scrapy应该如何做-规则自动爬取及命令行下传参
本次探讨的主题是规则爬取的实现及命令行下的自定义参数的传递,规则下的爬虫在我看来才是真正意义上的爬虫. 我们选从逻辑上来看,这种爬虫是如何工作的: 我们给定一个起点的url link ,进入页面之后提 ...
- 【个人训练】The Cow Lexicon(POJ-3267)
继续大战dp.2018年11月30日修订,更新一下现在看到这个题目的理解(ps:就现在,poj又503了). 题意分析 这条题目的大意是这样的,问一字符串内最少删去多少的字符使其由给定的若干字符串构成 ...
- 【CodeForces】9B-Running Student
目录 Question Description Input Output Solution 解法1 Question Description 小明在公交车始发站上车,他应该在哪个站点下车才能最快到达学 ...
- MySQL训练营01
一.数据库基础知识: 1. 数据库(database):保存有组织的数据的容器(通常是一个或者一组文件) 2. 数据库管理系统(DBMS):数据库软件,外界通过DBMS来创建和操纵数据库,具体是什么, ...
- SpringBoot:工厂模式实现定时任务可配置
pringBoot:工厂模式实现定时任务可配置 需要:使用springboot,实现定时任务可配置. 定时任务可在代码中写死,在配置文件中配置,这些都不能实现定时任务在服务器不重启的情况下可配置. 为 ...
- 关于c++的头文件依赖
正在看google c++编程规范,里面对头文件依赖是这么说的: 使用前置声明(forward declarations)尽量减少.h文件中#include的数量. 当一个头文件被包含的同时也引入了一 ...
- picker组件,mode=date,苹果机年份从1开始
由于在IOS上复制图片不方便, 所以用了张别的网站的图 这是在没有设置value和start的情况下出现的,安卓机上显示是好的.尝试完网上相关说法, 发现都不中! 通过各种挣扎啊!~ 心里苦啊~ 复制 ...
- 【集训试题】SiriusRen的卡牌 set
题意概述: 给出N张卡牌,每张有三个属性a,b,c,同时给出所有属性可能的最大值A,B,C.对于一张卡牌,当这张卡牌至少有两个属性大于另外一张卡牌的对应两个属性的时候,认为这张卡牌更加优秀.现在问有多 ...