gluon 实现多层感知机MLP分类FashionMNIST
from mxnet import gluon,init
from mxnet.gluon import loss as gloss, nn
from mxnet.gluon import data as gdata
from mxnet import nd,autograd
import gluonbook as gb import sys # 读取数据
# 读取数据
mnist_train = gdata.vision.FashionMNIST(train=True)
mnist_test = gdata.vision.FashionMNIST(train=False) batch_size = 256
transformer = gdata.vision.transforms.ToTensor()
if sys.platform.startswith('win'):
num_workers = 0
else:
num_workers = 4 # 小批量数据迭代器
train_iter = gdata.DataLoader(mnist_train.transform_first(transformer),batch_size=batch_size,shuffle=True,num_workers=num_workers)
test_iter = gdata.DataLoader(mnist_test.transform_first(transformer),batch_size=batch_size,shuffle=False,num_workers=num_workers) # 定义网络
net = nn.Sequential()
net.add(nn.Dense(256,activation='relu'),nn.Dense(10))
net.initialize(init.Normal(sigma=0.01)) # 损失函数
loss = gloss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':0.5}) def accuracy(y_hat, y):
return (y_hat.argmax(axis=1) == y.astype('float32')).mean().asscalar() def evaluate_accuracy(data_iter, net):
acc = 0
for X, y in data_iter:
acc += accuracy(net(X), y)
return acc / len(data_iter) num_epochs = 5 def train(net,train_iter,test_iter,loss,num_epochs,batch_size,params=None,lr=None,trainer=None):
for epoch in range(num_epochs):
train_l_sum = 0
train_acc_sum = 0
for X,y in train_iter:
with autograd.record():
y_hat = net(X)
l = loss(y_hat,y)
l.backward() if trainer is None:
gb.sgd(params,lr,batch_size)
else:
trainer.step(batch_size) train_l_sum += l.mean().asscalar() test_acc = evaluate_accuracy(test_iter,net)
print('epoch %d,loss %.4f,test acc %.3f'%(epoch+1,train_l_sum / len(train_iter),test_acc)) train(net,train_iter,test_iter,loss,num_epochs,batch_size,None,None,trainer)
gluon 实现多层感知机MLP分类FashionMNIST的更多相关文章
- TensorFlow实现多层感知机MINIST分类
TensorFlow实现多层感知机MINIST分类 TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.使用梯度自动更新用变量定义的张量.本文将使用 Tenso ...
- keras多层感知机MLP
肯定有人要说什么多层感知机,不就是几个隐藏层连接在一起的吗.话是这么说,但是我觉得我们首先要自己承认自己高级,不然怎么去说服(hu nong)别人呢 from keras.models import ...
- 小白学习之pytorch框架(5)-多层感知机(MLP)-(tensor、variable、计算图、ReLU()、sigmoid()、tanh())
先记录一下一开始学习torch时未曾记录(也未好好弄懂哈)导致又忘记了的tensor.variable.计算图 计算图 计算图直白的来说,就是数学公式(也叫模型)用图表示,这个图即计算图.借用 htt ...
- 多层感知机MLP的gluon版分类minist
MLP_Gluon .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...
- 学习笔记TF026:多层感知机
隐含层,指除输入.输出层外,的中间层.输入.输出层对外可见.隐含层对外不可见.理论上,只要隐含层节点足够多,只有一个隐含层,神经网络可以拟合任意函数.隐含层越多,越容易拟合复杂函数.拟合复杂函数,所需 ...
- Alink漫谈(十五) :多层感知机 之 迭代优化
Alink漫谈(十五) :多层感知机 之 迭代优化 目录 Alink漫谈(十五) :多层感知机 之 迭代优化 0x00 摘要 0x01 前文回顾 1.1 基本概念 1.2 误差反向传播算法 1.3 总 ...
- Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...
- Alink漫谈(十四) :多层感知机 之 总体架构
Alink漫谈(十四) :多层感知机 之 总体架构 目录 Alink漫谈(十四) :多层感知机 之 总体架构 0x00 摘要 0x01 背景概念 1.1 前馈神经网络 1.2 反向传播 1.3 代价函 ...
- DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解
本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参 ...
随机推荐
- RSA加密、解密、签名、校验签名
先说下RSA概率: 公钥和私钥是通过本地openssl软件生成. 正常: 公钥加密=>私钥解密: 私钥签名=>公钥校验签名 最近做一个项目,对方用java公钥去校验签名,这边java的De ...
- git使用问题及解决方法
1. 设置pull默认rebasegit config --global pull.rebase true 2. 问题解决:Unlink of file '.git/objects/pack/pack ...
- 对key中有数字的字典进行排序
word_cloud = []cc = [{"c58":341,"c59":525,"c56":507,"c57":34 ...
- 一个C#后台调用接口的例子
string url = ConfigurationSettings.AppSettings["resurl"].ToString(); var wc = new WebClien ...
- JavaScript获取url参数
声明:以下内容转自网络 方法一 String.prototype.getUrlString = function(name) { var reg = new RegExp("(^|& ...
- Git读档
$ git config --global user.name "meng kai" $ git config --global user.email 363255751@qq.c ...
- libtar 和 libz 的使用
libtar 和 libz 的使用 用c代码生成 tar.gz 文件 实现的功能和 tar -zcf 命令一样 大概流程为 1.先用libtar相关函数对某个目录生成tar文件 2.然后对tar文件 ...
- python之高阶函数map/reduce
L = [] for n in [1, 2, 3, 4, 5, 6, 7, 8, 9]: L.append(f(n)) print(L) Python内建了map()和reduce()函数. 我们先看 ...
- 安装VS2013时,如何避开IE10的限制
安装VS2013时,如何避开IE10的限制 VS就会告诉我们目前环境不适合安装VS2013,必须升级IE版本到IE10. 如果不想安装IE10,有没有办法呢? 答案肯定是有的. 将下面一段文字,储存为 ...
- SpringBoot ------ 使用AOP处理请求
一.AOP统一处理请求日志 1.spring的两大核心:AOP , IOC 2.面向对象OOP关注的是将需求功能垂直,划分为不同的,并且相对独立的, 会封装成良好的类,并且类有属于自己的行为. ...