【bzoj3261】最大异或和
就是一个可持久化Trie.......
#include<bits/stdc++.h>
#define N 600005
using namespace std;
inline int read(){
int f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return f*x;
}
int bin[],n,m,a[N],b[N],rt[N];
struct Trie{
int cnt,c[N*][],sum[N*];
int ins(int x,int val){
int tmp,y;tmp=y=++cnt;
for(int i=;i>=;i--){
c[y][]=c[x][];c[y][]=c[x][];
sum[y]=sum[x]+;
int t=val&bin[i];t>>=i;
x=c[x][t];c[y][t]=++cnt;y=c[y][t];
}
sum[y]=sum[x]+;
return tmp;
}
int query(int l,int r,int val){
int tmp=;
for(int i=;i>=;i--){
int t=val&bin[i];t>>=i;
if(sum[c[r][t^]]-sum[c[l][t^]])
tmp+=bin[i],r=c[r][t^],l=c[l][t^];
else r=c[r][t],l=c[l][t];
}
return tmp;
}
}T;
int main(){
bin[]=;for(int i=;i<=;i++)bin[i]=bin[i-]<<;
n=read();m=read();n++;
for(int i=;i<=n;i++)a[i]=read();
for(int i=;i<=n;i++)b[i]=b[i-]^a[i];
for(int i=;i<=n;i++)rt[i]=T.ins(rt[i-],b[i]);
char s[];int l,r,x;
while(m--){
scanf("%s",s);
if(s[]=='A'){
n++;a[n]=read();b[n]=b[n-]^a[n];
rt[n]=T.ins(rt[n-],b[n]);
}
else{
l=read();r=read();x=read();
printf("%d\n",T.query(rt[l-],rt[r],b[n]^x));
}
}
}
【bzoj3261】最大异或和的更多相关文章
- bzoj3261: 最大异或和
可持久化trie.又是%%%Xs酱... #include<cstdio> #include<cstring> #include<iostream> #includ ...
- ⌈洛谷4735⌋⌈BZOJ3261⌋最大异或和【可持久化01Trie】
题目链接 [BZOJ传送门] [洛谷传送门] 题解 终于学会了可持久化trie树了.感觉并不是特别的难. 因为可持久化,那么我们就考虑动态开点的trie树. 都知道异或操作是有传递性的,那么我们就维护 ...
- BZOJ3261最大异或和——主席树
题目描述 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p ...
- bzoj3261: 最大异或和 可持久化trie
题意:给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p,满 ...
- 2018.08.04 bzoj3261: 最大异或和(trie)
传送门 简单可持久化01trie树. 实际上这东西跟可持久化线段树貌似是一个东西啊. 要维护题目给出的信息,就需要维护前缀异或和并且把它们插入一棵01trie树,然后利用贪心的思想在上面递归就行了,因 ...
- bzoj3261: 最大异或和 (可持久化trie树)
题目链接 题解 看到异或和最大就应该想到01 trie树 我们记\(S_i\)为前i项的异或和 那么我们的目的是最大化\(S_n\)^\(x\)^\(S_{j-1}\) \((l <= j &l ...
- 【可持久化Trie】bzoj3261 最大异或和
对原序列取前缀异或值,变成pre[1...N],然后询问等价于求max{a[N]^x^pre[i]}(l-1<=i<=r-1). #include<cstdio> #defin ...
- BZOJ3261: 最大异或和(可持久化trie树)
题意 题目链接 Sol 设\(sum[i]\)表示\(1 - i\)的异或和 首先把每个询问的\(x \oplus sum[n]\)就变成了询问前缀最大值 可持久化Trie树维护前缀xor,建树的时候 ...
- [BZOJ3261] 最大异或和 (异或前缀和,可持久化Trie)
Description 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Q l r x:询问操作, ...
- BZOJ3261 最大异或和 【可持久化trie树】
题目 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p,满 ...
随机推荐
- MQTT在平台中的应用【本文摘自智车芯官网】
MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议,有可能成为物联网的重要组成部分.该协议支持所有平台,几乎可以把所有联 ...
- 漫谈单点登录(SSO)
1. 摘要 ( 注意:请仔细看下摘要,留心此文是否是您的菜,若浪费宝贵时间,深感歉意!!!) SSO这一概念由来已久,网络上对应不同场景的成熟SSO解决方案比比皆是,从简单到复杂,各式各样应有尽有!开 ...
- 一个类似植物大战僵尸的python源码
# 1 - Import library import pygame from pygame.locals import * import math import random # 2 - Initi ...
- 算法(12)Pascal's Triangle II
题目:输出帕斯卡三角的第k行 思路:真没思路,发现几个easy的题不容易想!这里的大致思路是从后开始更新第k行!
- 玩lua
https://my.oschina.net/wangxuanyihaha/blog/186401
- mongo db 使用方法[转]
1 下载 mogodb http://www.mongodb.org/display/DOCS/Downloads 2 打开服务 我安装在e盘下了 可以指定数据文件位置 到 E:\mongoDB\mo ...
- Java IO 之 File 的创建、重命名与遍历
File表示存储设备上的一个文件或目录,使用方式查看API即可,比较简单 package org.zln.io.file; import java.io.File; /** * Created by ...
- [洛谷P1131][ZJOI2007]时态同步
题目大意:给你一棵树,每条边有边权,要求增加一些边的边权,使得根节点到每个叶子节点的距离相等,求出最少共增加多少边权. 题解:树形$DP$,对于每个点,如果它到它的子树中的叶子节点距离不同,一定要在这 ...
- BZOJ1607 [Usaco2008 Dec]Patting Heads 轻拍牛头 【筛法】
题目 今天是贝茜的生日,为了庆祝自己的生日,贝茜邀你来玩一个游戏. 贝茜让N(1≤N≤100000)头奶牛坐成一个圈.除了1号与N号奶牛外,i号奶牛与i-l号和i+l号奶牛相邻.N号奶牛与1号奶牛相邻 ...
- CF763E Timofey and our friends animals
题目戳这里. 首先题解给的是并查集的做法.这个做法很好想,但是很难码.用线段树数来维护并查集,暴力合并. 这里推荐另一个做法,可以无视\(K\)的限制.我们给每条边加个边权,这个边权为这条边左端点的值 ...