http://www.lydsy.com/JudgeOnline/problem.php?id=4522

题目:给你RSA密钥的公钥和密文,求私钥和原文,其中\(N=pq\le 2^{62}\),p和q为质数。

RSA加密算法:https://en.wikipedia.org/wiki/RSA_(cryptosystem)

N的范围较小,我们可以用pollard-rho算法在期望O(N^0.25)的时间把N分解出来,用exgcd求逆元之后直接代入。

因为懒,写了一个很短的模板。速度还行,进了第一页。

upd:更新了模板,在另一篇文章里面。

/**************************************************************
Problem: 4522
User: will7101
Language: C++
Result: Accepted
Time:392 ms
Memory:1292 kb
****************************************************************/ #include <bits/stdc++.h>
using namespace std;
typedef unsigned long long ll;
const int MAXN = 100005;
ll mmul(ll a, ll b, ll m){ll r=0;for(;b;b>>=1,a=a+a>=m?a+a-m:a+a)if(b&1)r=r+a=>m?r+a-m:r+a;return r;}
ll mpow(ll a, ll b, ll m){ll r=1;for(;b;b>>=1,a=mmul(a,a,m))if(b&1)r=mmul(r,a,m);return r;}
ll gcd(ll a, ll b){return a?gcd(b%a,a):b;}
ll exgcd(ll a, ll b, ll &x, ll &y){
if(a==0) return x=0, y=1, b;
ll t=exgcd(b%a, a, y, x);
x-=y*(b/a); return t;
}
ll work(ll n, ll c)
{
ll x, y;
x=y=rand();
while(1){
x=(mmul(x,x,n)+c)%n;
y=(mmul(y,y,n)+c)%n;
y=(mmul(y,y,n)+c)%n;
if(x==y) return 1;
ll p=gcd(x>y?x-y:y-x, n);
if(p>1) return p;
}
}
int main()
{
srand(19260817);
ll e, n, C, p, q, c, r, x, y;
cin>>e>>n>>C;
c=1;
while((p=work(n, c))==1) c++;
q=n/p; r=(p-1)*(q-1);
exgcd(e, r, x, y); x=(x+r)%r;
cout<<x<<' '<<mpow(C,x,n);
return 0;
}

BZOJ 4522: [Cqoi2016]密钥破解的更多相关文章

  1. BZOJ 4522: [Cqoi2016]密钥破解 (Pollard-Rho板题)

    Pollard-Rho 模板 板题-没啥说的- 求逆元出来后如果是负的记得加回正数 CODE #include<bits/stdc++.h> using namespace std; ty ...

  2. BZOJ 4522: [Cqoi2016]密钥破解 exgcd+Pollard-Rho

    挺简单的,正好能再复习一遍 $exgcd$~ 按照题意一遍一遍模拟即可,注意一下 $pollard-rho$ 中的细节. #include <ctime> #include <cma ...

  3. LG4718 【模板】Pollard-Rho算法 和 [Cqoi2016]密钥破解

    Pollard-Rho算法 总结了各种卡常技巧的代码: #define int long long typedef __int128 LL; IN int fpow(int a,int b,int m ...

  4. BZOJ4522:[CQOI2016]密钥破解(Pollard-Rho,exgcd)

    Description 一种非对称加密算法的密钥生成过程如下: 1. 任选两个不同的质数 p ,q 2. 计算 N=pq , r=(p-1)(q-1) 3. 选取小于r ,且与 r 互质的整数 e  ...

  5. BZOJ4522: [Cqoi2016]密钥破解

    pollard's rho模板题. 调参调到160ms无能为力了,应该是写法问题,不玩了. #include<bits/stdc++.h> using namespace std; typ ...

  6. [CQOI2016]密钥破解

    嘟嘟嘟 这题我读了两遍才懂,然后感觉要解什么高次同余方程--然后我又仔细的看了看题,发现只要求得\(p\)和\(q\)就能求出\(r\),继而用exgcd求出\(d\),最后用快速幂求出\(n\). ...

  7. 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)

    4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 290  Solved: 148[Submit][Status ...

  8. LibreOJ2045 - 「CQOI2016」密钥破解

    Portal Description 给出三个正整数\(e,N,c(\leq2^{62})\).已知\(N\)能表示成\(p\cdot q\)的形式,其中\(p,q\)为质数.计算\(r=(p-1)( ...

  9. Visio Premium 2010密钥+破解激活方法

    Visio Premium 2010密钥+破解激活方法: 在安装时能够使用下面密钥: GR24B-GC2XY-KRXRG-2TRJJ-4X7DC VWQ6G-37WBG-J7DJP-CY66Y-V27 ...

随机推荐

  1. CodeBlocks 3 使用设置

    使用MingW作为CB的默认编译器和wxWidgets进行编程,当然需要好好配置一番,因为mingw在windows下用起来着实没有win32原生态程序运行快,也没有他小,好处是借助wxwidgets ...

  2. day-11 python自带库实现2层简单神经网络算法

    深度神经网络算法,是基于神经网络算法的一种拓展,其层数更深,达到多层,本文以简单神经网络为例,利用梯度下降算法进行反向更新来训练神经网络权重和偏向参数,文章最后,基于Python 库实现了一个简单神经 ...

  3. ACM训练大纲

    1. 算法总结及推荐题目 1.1 C++ STL • STL容器: set, map, vector, priority_queue, queue, stack, deque, bitset• STL ...

  4. Oracle入门书籍推荐

    作者:eygle |English [转载时请标明出处和作者信息]|[恩墨学院 OCM培训传DBA成功之道] 链接:http://www.eygle.com/archives/2006/08/orac ...

  5. 【SSH】——两种添加jar包方式的比较

    [前言] 在开发过程中,我们对Eclipse或MyEclipse等IDE越来越熟悉了.在使用的过程中,小编了解到两种添加jar包的方式,今天给大家说下这两种方式的差别. 方法一: 将所需要的jar包拷 ...

  6. WCF身份验证一:消息安全模式之<Certificate>身份验证

    消息安全模式的证书身份验证方式,基于WSHttpBinding绑定协议的实现过程.主要内容:基本概念,然后是制作证书.服务端配置.客户端配置.总结.这里应该和Transport传输安全模式之证书身份验 ...

  7. Intellij IDEA 系统路径配置

    在使用IDEA启动Tomcat的时候,会读取系统路径,默认路径可能不是我们想要的,可以修改 C:\MyPrograms\IntelliJ IDEA 14.0.1\bin\idea.properties ...

  8. request.getParameterMap() 获取表单提交的键值对 并且 也能获取动态表单的key

    Map<String,String[]> map = request.getParameterMap();Set<String> keys = map.keySet(); 获取 ...

  9. elasticsearch集群及filebeat server和logstash server

    elasticsearch集群及filebeat server和logstash server author:JevonWei版权声明:原创作品blog:http://119.23.52.191/ 实 ...

  10. 解决IIS的Server Application Error

    问题描述一下: Server Application ErrorThe server has encountered an error while loading an application dur ...