题目链接

题意:在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。

这是道状压\(DP\)好题啊。。

定义状态:一个二进制数某一位为\(1\)表示该位放了国王,反之亦然。

设\(f[i][j][k]\)表示,前\(i\)行,已经放了\(j\)个国王,并且第\(i\)的状态为\(k\)时的方案数。

直接枚举所有状态显然不可行,于是可以先预处理去所有相邻两格不矛盾的状态,也就是每一行可能出现的状态。

显然,当上一行的状态与该行的状态不矛盾时,状态能转移。

所以,枚举这一行的状态和上一行的状态转移就行了,边界第一行所有状态的方案数都为\(1\)。

怎么判断矛不矛盾呢?

把这一行的状态和上一行的状态进行按位与运算就能判断是否存在上下矛盾。

但题目要求\(2\)个国王不能有公共顶点,把这行的状态左移一位再按位与,然后右移一位再按位与就行了。

当三次与运算的结果都是\(0\)时,状态能转移。

#include <cstdio>
#define Open(s) freopen(s".in","r",stdin);freopen(s".out","w",stdout);
#define Close fclose(stdin);fclose(stdout);
const int MAXN = 12;
int n, k;
int vis[MAXN][MAXN];
int s[1024], p[1024];
void dfs(int now, int S, int fi){ //dfs求出一行所有可能的状态,now是当前到第几位了,S是当前状态,fi是已经放了几个国王了
if(now > n){
s[++s[0]] = S; p[s[0]] = fi;
return;
}
dfs(now + 1, S, fi); //不放
if(now == 1 || !(S & (1 << (now - 2)))) dfs(now + 1, S | (1 << (now - 1)), fi + 1); //放
}
long long f[MAXN][MAXN * MAXN][1026];
long long ans;
int main(){
scanf("%d%d", &n, &k);
dfs(1, 0, 0);
for(int i = 1; i <= s[0]; ++i) //边界
f[1][p[i]][i] = 1;
for(int i = 2; i <= n; ++i)
for(int j = 1; j <= s[0]; ++j) //上一行状态
for(int o = 1; o <= s[0]; ++o){ //该行状态
if((s[j] & s[o]) || ((s[j] << 1) & s[o]) || ((s[o] << 1) & s[j])) continue; //能转移
for(int l = p[o]; l <= k; ++l) //转移
f[i][l][o] += f[i - 1][l - p[o]][j];
}
for(int i = 1; i <= s[0]; ++i) ans += f[n][k][i];
printf("%lld\n", ans);
return 0;
}

【洛谷 P1896】[SCOI2005]互不侵犯(状压dp)的更多相关文章

  1. P1896 [SCOI2005]互不侵犯 状压dp

    正解:状压dp 解题报告: 看到是四川省选的时候我心里慌得一批TT然后看到难度之后放下心来觉得大概没有那么难 事实证明我还是too young too simple了QAQ难到爆炸TT我本来还想刚一道 ...

  2. 洛谷——P1896 [SCOI2005]互不侵犯

    P1896 [SCOI2005]互不侵犯 状压DP入门题 状压DP一般需要与处理状态是否合法,节省时间 设定状态dp[i][j][k]表示第i行第j个状态选择国王数为k的方案数 $dp[i][j][n ...

  3. 洛谷 P1896 [SCOI2005]互不侵犯

    洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...

  4. 洛谷P1896 [SCOI2005]互不侵犯King

    P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...

  5. 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)

    洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...

  6. BZOJ1087[SCOI2005]互不侵犯——状压DP

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入 只有一行,包含两个数N,K ( ...

  7. SCOI2005 互不侵犯 [状压dp]

    题目传送门 题目大意:有n*n个格子,你需要放置k个国王使得它们无法互相攻击,每个国王的攻击范围为上下左走,左上右上左下右下,共8个格子,求最多的方法数 看到题目,是不是一下子就想到了玉米田那道题,如 ...

  8. [SCOI2005]互不侵犯 (状压$dp$)

    题目链接 Solution 状压 \(dp\) . \(f[i][j][k]\) 代表前 \(i\) 列中 , 已经安置 \(j\) 位国王,且最后一位状态为 \(k\) . 然后就可以很轻松的转移了 ...

  9. 洛谷 P1896 [SCOI2005]互不侵犯 (状态压缩DP)

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...

  10. 洛谷P1896 [SCOI2005]互不侵犯King【状压DP】

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入格式: 只有一行,包含两个数N,K ...

随机推荐

  1. Python连接符的种类和使用区别

    python的连接符主要有 加号(+).逗号(,).空格(   ) .反斜线(\).join()的方式. 加号(+),demo如下: #注意,+只能连接字符串,如果一个是字符串一个是数字就会报错 pr ...

  2. c++ constructor, copy constructor, operator =

    // list::push_back #include <iostream> #include <list> class element{ private: int numbe ...

  3. Ubuntu16.04安装Zabbix

    基于Zabbix+MySQL+Apache(可选) apt-get install php7.0-bcmath php7.0-xml php7.0-mbstring安装Zabbix所需的几个PHP模块 ...

  4. spring mvc:实现给Controller函数传入list<pojo>参数

    [1]前端js调用示例: ...insertStatisData?statisDatas=[{'cid':'2','devId':'9003','deviceName':'测试名','endTime' ...

  5. eclipse 创建Makefile工程生成多个执行文件

    1.创建Makefile工程 2.创建inc src Debug 目录 用于存放头文件源文件 3.编写Makefile 需要在有源文件的目标天剑Makefile文件,如下给出一个生成两个target的 ...

  6. thinkphp3.2 验证码的使用

    验证码生成: public function verify(){ ob_clean(); $verify = new \Think\Verify; $verify->codeSet = '012 ...

  7. maven打包遇到的问题

    1.javax.servlet.jsp.tagext不存在 maven打包报程序包javax.servlet.jsp.tagext不存在或者maven打包报程序包javax.servlet.jsp不存 ...

  8. Object empty value key filter

    Object empty value key filter 过滤空值 Utils emptykeysFilter() "use strict"; /** * * @author x ...

  9. 对于response.setContentType(MIME)的解释

    response.setContentType(MIME)的作用是使客户端浏览器,区分不同种类的数据,并根据不同的MIME调用浏览器内不同的程序嵌入模块来处理相应的数据.例如web浏览器就是通过MIM ...

  10. hdu 1787 GCD Again (欧拉函数)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...