51nod 1831 小C的游戏(博弈论+打表)
比较坑的题目。
题意就是:给出一堆石子,一次操作可以变成它的约数个,也可以拿只拿一个,不能变成一个,最后拿的人输。
经过打表发现
几乎所有质数都是先手必败的,几乎所有合数都是先手必胜的
只有几个例外,就是17^n, 2^n这些。
不过继续推导可以发现16是先手必败的,因为2,4,8,15都是先手必胜的
所以2^n(n>4)都是先手必胜的
17是先手必胜的,所以17^2是先手必败的,17^n(n>2)是先手必胜的
17*2是先手必败的
同理可以推导出2^n*17^m这些(当n>1或m>1)时是先手必胜的
#include <iostream>
#include <cstdio>
#include <map>
#include <cstring>
using namespace std;
map<int, int> dp, visit; int main()
{
int T, x;
cin>>T;
while(T--){
scanf("%d", &x);
int isp = ;
for(int i = ; i*i <= x; i++) if(x % i == ) isp = ;
if(isp) cout<<((x == ) || (x == ) ? "TAK" : "NIE")<<endl;
else cout<<((x == ) || (x == ) || (x == ) ? "NIE" : "TAK")<<endl;
}
return ;
}
51nod 1831 小C的游戏(博弈论+打表)的更多相关文章
- 51nod 1831 小C的游戏
小C和小L是好朋友,她们在玩一个游戏. 一开始有一个大小为n的石子堆,小C先手. 每次可以对这个石子堆拿走一个或者把这个石子堆分成等量的几份并只取其中一份(不能不变或只剩下一个). 如果取走最后一个人 ...
- 51nod 1831: 小C的游戏(Bash博弈 找规律)
题目链接 此类博弈不需要考虑sg函数,只需要确定必胜态和必败态,解题思路一般为打败先打表找规律,而后找规律给出统一的公式.打表方式:给定初始条件(此题中为ok[0]=ok[1]=0),然后从低到高枚举 ...
- BZOJ 1022 Luogu P4279 [SHOI2008]小约翰的游戏 (博弈论)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=1022 (luogu) https://www.luogu.org/pro ...
- 51nod——2489 小b和灯泡(打表/平方数)
这题打表去找因子的个数然后判奇偶也行.预处理O(n) 扫一遍判断O(n). ; i * i <= n; i++){ for(int j = i; i * j <= n; j++){ div ...
- 【BZOJ1022】小约翰的游戏(博弈论)
[BZOJ1022]小约翰的游戏(博弈论) 题面 BZOJ 题解 \(Anti-SG\)游戏的模板题目. #include<iostream> #include<cstdio> ...
- [Bzoj1022][SHOI2008]小约翰的游戏John(博弈论)
1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2976 Solved: 1894[Submit] ...
- [bzoj1022/poj3480]小约翰的游戏John_博弈论
小约翰的游戏John 题目大意:Nim游戏.区别在于取走最后一颗石子这输. 注释:$1\le cases \le 500$,$1\le n\le 50$. 想法:anti-SG游戏Colon定理. 如 ...
- BZOJ_1022_[SHOI2008]_小约翰的游戏John_(博弈论_反Nim游戏)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1022 反Nim游戏裸题.详见论文<组合游戏略述——浅谈SG游戏的若干拓展及变形>. ...
- BZOJ1022 [SHOI2008]小约翰的游戏John 【博弈论】
1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3014 Solved: 1914 [Submi ...
随机推荐
- 如何改变memcached默认的缓存时间?
我们在使用php的memcached的扩展来对memcached进行数据添加时,数据的有效时间有两种方式.如下图. 至于设置一个UNIX时间戳或 以秒为单位的整数(从当前算起的时间差)来说明 ...
- Apache Maven(四):依赖
依赖管理是Maven的特性之一,它是用户最为熟悉的特性之一,也是Maven擅长的领域之一.管理单个项目的依赖并没有太大困难,但是当您开始处理由数十或数百个模块组成的多模块项目和应用程序时,Maven可 ...
- I/O流、ZIP文档
1) ZIP文档通常以压缩格式存储一个或多个文档.在Java中可以用ZipInputStream读入ZIP文档(即解压文件流),用ZipOutputStream写入ZIP文档(即压缩文件流),无论解压 ...
- python3笔记
python3 Python3 基本数据类型 Python 中有六个标准的数据类型: Numbers(数字) Python可以同时为多个变量赋值,如a, b = 1, 2. 一个变量可以通过赋值指向不 ...
- YII2.0学习一 Advanced 模板安装
下载github上的完事安装包(本机环境使用Composer安装非常慢) https://github.com/yiisoft/yii2-app-advanced 解压到文件目录 wwwroot/sh ...
- SpringBoot学习(1)
springboot的自动配置功能,主要流程如下: 1 启动的时候加载我们的主配置类,也就是我们的入口类:从而开启我们的自动配置配置功能,这个是通过@EnableAutoConfiguration注解 ...
- Jetson tx1 安装cuda错误
前两天安装Jetpack3.0的时候,看着网上的教程以为cuda会自动安装上,但是历经好几次安装,都安装不上cuda,也刷了好几次jetpack包.搜遍了网上的教程,也没有安装上.错误如下图所示: 这 ...
- JENKINS系统的安装部署
JENKINS 安装使用文档 简介 Jenkins是一个功能强大的应用程序,允许持续集成和持续交付项目,无论用的是什么平台.这是一个免费的源代码,可以处理任何类型的构建或持续集成,集成Jenkins可 ...
- 手把手教你写css3通用动画
之前接了几个微信里的项目,类似电子邀请函,什么分析报告这样的项目, 对css3动画要求十分高,每个页面客户几乎都有天马行空的想法,或者说设计师有这样的想法.众所周知css3里的keyframe写好了就 ...
- Eclipse中JS文件红叉处理
使用新版本的Eclipse 或者 MyEclipse,项目中的 JS文件出现红叉,让人觉得项目中存在错误代码,给人的感觉很不爽. 记录一下去掉红叉的方法: 第1步: 打开工作空间中的项目找到项目的 . ...