D. Sum of Medians
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

In one well-known algorithm of finding the k-th order statistics we should divide all elements into groups of five consecutive elements and find the median of each five. A median is called the middle element of a sorted array (it's the third largest element for a group of five). To increase the algorithm's performance speed on a modern video card, you should be able to find a sum of medians in each five of the array.

A sum of medians of a sorted k-element set S = {a1, a2, ..., ak}, where a1 < a2 < a3 < ... < ak, will be understood by as

The operator stands for taking the remainder, that is stands for the remainder of dividing x by y.

To organize exercise testing quickly calculating the sum of medians for a changing set was needed.

Input

The first line contains number n (1 ≤ n ≤ 105), the number of operations performed.

Then each of n lines contains the description of one of the three operations:

  • add x — add the element x to the set;
  • del x — delete the element x from the set;
  • sum — find the sum of medians of the set.

For any add x operation it is true that the element x is not included in the set directly before the operation.

For any del x operation it is true that the element x is included in the set directly before the operation.

All the numbers in the input are positive integers, not exceeding 109.

Output

For each operation sum print on the single line the sum of medians of the current set. If the set is empty, print 0.

Please, do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams (also you may use the %I64d specificator).

Examples
Input
6
add 4
add 5
add 1
add 2
add 3
sum
Output
3
Input
14
add 1
add 7
add 2
add 5
sum
add 6
add 8
add 9
add 3
add 4
add 10
sum
del 1
sum
Output
5
11
13
【分析】有n个操作,1:向集合中加一个数x;2:去掉集合中的数x;3:询问从小到大排序后,所有下标i%5==3的值的和。
刚开始想到线段树了,但是不知道怎么写,然后看了网上的题解。。。好强啊!!!每个节点额外保存此区间i=0~4的和,然后cnt数组保存此区间 元素的个数。
然后求和合并的时候,sum[rt][i]=sum[rt*2][i]+sum[rt*2+1][(i-cnt[rt*2]%5+5)%5];这个公式可以自己推一下。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
typedef long long ll;
const int N=2e5+;
const int M=N*N+;
int num,s,m,n,q;
int a[N],op[N],b[N];
ll sum[N*][];
int cnt[N*];
inline void PushPlus(int rt) {
cnt[rt]=cnt[rt*]+cnt[rt*+];
for(int i=;i<=;i++){
sum[rt][i]=sum[rt*][i]+sum[rt*+][(i-cnt[rt*]%+)%];
}
} void Update(int p,int add,int l,int r,int rt,int x) {
if(l==r) {
sum[rt][]+=add;
cnt[rt]+=x;
return;
}
int m=(r+l)>>;
if(p<=m)Update(p,add,lson,x);
else Update(p,add,rson,x);
PushPlus(rt);
} int main() {
int u,vv,w;
scanf("%d",&q);
char str[];
n=;
for(int i=;i<=q;i++){
scanf("%s",str);
if(str[]=='a'){
scanf("%d",&b[i]);
op[i]=;
a[++n]=b[i];
}
else if(str[]=='d'){
scanf("%d",&b[i]);
op[i]=-;
}
else {
op[i]=;
}
}
sort(a+,a+n+);
n=unique(a+,a+n+)-a-;
for(int i=;i<=q;i++){
if(abs(op[i])==){
int p=lower_bound(a+,a++n,b[i])-a;
Update(p,b[i]*op[i],,n,,op[i]);
}
else {
printf("%lld\n",sum[][]);
}
}
return ;
}

Coderforces 85 D. Sum of Medians(线段树单点修改)的更多相关文章

  1. Codeforces 85D Sum of Medians(线段树)

    题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...

  2. Ocean的礼物(线段树单点修改)

    题目链接:http://oj.ismdeep.com/contest/Problem?id=1284&pid=0 A: Ocean的礼物 Time Limit: 5 s      Memory ...

  3. Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树

    题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...

  4. codeforces 85D D. Sum of Medians 线段树

    D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

  5. POJ 3321 Apple Tree(DFS序+线段树单点修改区间查询)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25904   Accepted: 7682 Descr ...

  6. HDU 1166 敌兵布阵 <线段树 单点修改 区间查询>

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  7. HDU - 1166 敌兵布阵 方法一:(线段树+单点修改,区间查询和) 方法二:利用树状数组

    C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了.A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况.由于 ...

  8. 校内模拟赛T5:连续的“包含”子串长度( nekameleoni?) —— 线段树单点修改,区间查询 + 尺取法合并

    nekameleoni 区间查询和修改 给定N,K,M(N个整数序列,范围1~K,M次查询或修改) 如果是修改,则输入三个数,第一个数为1代表修改,第二个数为将N个数中第i个数做修改,第三个数为修改成 ...

  9. HDU1754 I hate it(线段树 单点修改)

    好久没打线段树,来一道练练手,但说句实话,I really hate it!!!!   很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少. 这让很多学生很反感.  不管 ...

随机推荐

  1. [洛谷P1801]黑匣子_NOI导刊2010提高(06)

    题目大意:两个操作:向一个可重集中加入一个元素:询问第$k$大的数($k$为之前询问的个数加一) 题解:离散化,权值线段树直接查询 卡点:无 C++ Code: #include <cstdio ...

  2. 菜单 & 工具栏 & 状态栏

    MFC中ON_UPDATE_COMMAND_UI和ON_COMMAND消息区别 CCmdUI 加载状态栏 加载工具栏

  3. 解析Mybaits的insert方法返回数字-2147482646的原因

    前言:前几天在做项目demo的时候,发现有一个很奇怪的现象,就是MyBatis发现更新和插入返回值一直为"-2147482646".无论怎么改,这个值一直不变...是在摸不着头脑, ...

  4. ByteUtil 工具类

    ByteUtil 工具类 import java.io.FileOutputStream; import java.io.OutputStream; import java.nio.charset.C ...

  5. Python基础(7)闭包函数、装饰器

    一.闭包函数 闭包函数:1.函数内部定义函数,成为内部函数, 2.改内部函数包含对外部作用域,而不是对全局作用域名字的引用 那么该内部函数成为闭包函数 #最简单的无参闭包函数 def func1() ...

  6. linux中nginx重定向方法总结

    linux中nginx 301重定向跳转方法总结 第一种情况:访问aaaaaaa站定向到bbbbbbbbbbb站 复制代码代码如下: server { server_naaaaaaame www.aa ...

  7. CentOS 7 单用户模式修改root密码

    1)在启动grub菜单,选择编辑选项启动 2)按键盘e键,来进入编辑界面 3)找到Linux 16的那一行,将ro改为rw init=/sysroot/bin/sh 4)现在按下Control+x,使 ...

  8. C++中 相对路径与绝对路径 斜杠 '/' 与反斜杠 '\'的区别

    文件路径正斜杠和反斜杠 正斜杠,又称左斜杠,符号是"/":反斜杠,也称右斜杠,符号是"\".文件路径的表示可以分为绝对路径和相对路径: 1.绝对路径表示相对容易 ...

  9. Oracle 11g 安装环境配置脚本

    #!/bin/bash #Test in RHEL 5.5 for 11g c=`cat /etc/shadow | grep oracle | wc -l`if [ $c != 0 ]then  w ...

  10. 3个js函数 变成数组本身的3个方法

    <!DOCTYPE html> 3个js函数 变成数组本身的3个方法 /** * 稀疏数组 变成不稀疏数组 * @params array arr 稀疏数组 * @return arry ...